मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Differentiate the following w.r.t.x: sec[tan (x4 + 4)] - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Differentiate the following w.r.t.x: sec[tan (x4 + 4)]

बेरीज

उत्तर

Let y = sec[tan (x4 + 4)]
Differentiating w.r.t. x, we get
`"dy"/"dx" = "d"/"dx"{sec[tan(x^4 + 4)]}`

= `sec[tan(x^4 + 4)].tan[tan(x^4 + 4)]."d"/"dx"[tan(x^4 + 4)]`

= `sec[tan(x^4 + 4)].tan[tan(x^4 + 4)].sec^2(x^4 + 4)."d"/"dx"(x^4 + 4)`

= sec[tan(x4 + 4)]·tan[tan(x4 + 4)]·sec2(x4 + 4).(4x3 + 0)
= 4x3·sec2(x4 + 4)·sec[tan(x4 + 4)]·tan[tan(x4 + 4)].

shaalaa.com
Differentiation
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Differentiation - Exercise 1.1 [पृष्ठ १२]

APPEARS IN

संबंधित प्रश्‍न

Differentiate the following w.r.t.x:

`(2x^(3/2) - 3x^(4/3) - 5)^(5/2)`


Differentiate the following w.r.t.x: `sqrt(tansqrt(x)`


Differentiate the following w.r.t.x: cot3[log(x3)]


Differentiate the following w.r.t.x: `e^(3sin^2x - 2cos^2x)`


Differentiate the following w.r.t.x:

tan[cos(sinx)]


Differentiate the following w.r.t.x: `sinsqrt(sinsqrt(x)`


Differentiate the following w.r.t.x:

sin2x2 – cos2x2 


Differentiate the following w.r.t.x:

(x2 + 4x + 1)3 + (x3− 5x − 2)4 


Differentiate the following w.r.t.x: `log[4^(2x)((x^2 + 5)/(sqrt(2x^3 - 4)))^(3/2)]`


Differentiate the following w.r.t.x:

y = (25)log5(secx) − (16)log4(tanx) 


Differentiate the following w.r.t. x : tan–1(log x)


Differentiate the following w.r.t. x : cot–1(x3)


Differentiate the following w.r.t. x : cos–1(1 –x2)


Differentiate the following w.r.t. x : `cot^-1[cot(e^(x^2))]`


Differentiate the following w.r.t. x : `tan^-1[(1 - tan(x/2))/(1 + tan(x/2))]`


Differentiate the following w.r.t. x : `cot^-1((sin3x)/(1 + cos3x))`


Differentiate the following w.r.t.x:

tan–1 (cosec x + cot x)


Differentiate the following w.r.t. x :

`cot^-1[(sqrt(1 + sin  ((4x)/3)) + sqrt(1 - sin  ((4x)/3)))/(sqrt(1 + sin  ((4x)/3)) - sqrt(1 - sin  ((4x)/3)))]`


Differentiate the following w.r.t. x : `tan^-1((2x)/(1 - x^2))`


Differentiate the following w.r.t. x :

`cos^-1  ((1 - 9^x))/((1 + 9^x)`


Differentiate the following w.r.t. x : `tan^-1((8x)/(1 - 15x^2))`


Differentiate the following w.r.t.x:

`cot^-1((1 + 35x^2)/(2x))`


Differentiate the following w.r.t. x : `cot^-1((4 - x - 2x^2)/(3x + 2))`


Differentiate the following w.r.t. x : `((x^2 + 2x + 2)^(3/2))/((sqrt(x) + 3)^3(cosx)^x`


Differentiate the following w.r.t. x : (sin x)x 


Differentiate the following w.r.t. x:

`x^(x^x) + e^(x^x)`


Differentiate the following w.r.t. x :

etanx + (logx)tanx 


Differentiate the following w.r.t. x : `10^(x^(x)) + x^(x(10)) + x^(10x)`


Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : x7.y5 = (x + y)12 


If y = `tan^-1[sqrt((1 + cos x)/(1 - cos x))]`, find `("d"y)/("d"x)`


Differentiate `tan^-1((8x)/(1 - 15x^2))` w.r. to x


If x = `sqrt("a"^(sin^-1 "t")), "y" = sqrt("a"^(cos^-1 "t")), "then" "dy"/"dx"` = ______


A particle moves so that x = 2 + 27t - t3. The direction of motion reverses after moving a distance of ______ units.


If f(x) = `(3x + 1)/(5x - 4)` and t = `(5 + 3x)/(x - 4)`, then f(t) is ______ 


Solve `x + y (dy)/(dx) = sec(x^2 + y^2)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×