Advertisements
Advertisements
प्रश्न
Differentiate the following w.r.t. x : `((x^2 + 2x + 2)^(3/2))/((sqrt(x) + 3)^3(cosx)^x`
उत्तर
Let y = `((x^2 + 2x + 2)^(3/2))/((sqrt(x) + 3)^3(cosx)^x`
Then log y = `log[((x^2 + 2x + 2)^(3/2))/((sqrt(x) + 3)^3(cosx)^x)]`
= `log(x^2 + 2x + 2)^(3/2) - log(sqrt(x) + 3)^3(cosx)^x`
= `(3)/(2)log(x^2 + 2x + 2) - 3log(sqrt(x) + 3) - xlog(cosx)`
Differentiating both sides w.r.t. x, we get
`(1)/y."dy"/"dx" = (3)/(2)"d"/"dx"[log(x^2 + 2x + 2)] -3"d"/"dx"[log(sqrt(x) + 3)] - "d"/"dx"[xlog(cosx)]`
= `(3)/(2) xx (1)/(x^2 + 2x + 2)."d"/"dx"(x^2 + 2x + 2) -3 xx (1)/(sqrt(x) + 3)."d"/"dx"(sqrt(x) + 3) - {x"d"/"dx"[log(cosx)] + log(cosx)."d"/"dx"(x)}`
= `(3)/(2(x^2 + 2x + 2)) xx (2x + 2 xx 1 + 0) - (3)/(sqrt(x) + 3) xx (1/(2sqrt(x)) + 0) - {x xx (1)/cosx."d"/"dx"(cosx) + log(cosx) xx 1}`
= `(3(2x + 2))/(2(x^2 + 2x + 2)) - (3)/(2sqrt(x)(sqrt(x) + 3)) - {x xx (1)/cosx.(-sinx) + log(cosx)}`
∴ `"dy"/"dx" = y[(3(x + 1))/(x^2 + 2x + 2) - (3)/(2sqrt(x)(sqrt(x) + 3)) + xtanx - log(cosx)]`
= `((x^2 + 2x + 2)^(3/2))/((sqrt(x) + 3)^3(cosx)^x)[(3(x + 1))/(x^2 + 2x + 2) - (3)/(2sqrt(x)(sqrt(x) + 3)) + xtanx - log(cosx)]`.
APPEARS IN
संबंधित प्रश्न
Differentiate the following w.r.t.x: `sqrt(x^2 + 4x - 7)`
Differentiate the following w.r.t.x:
`(x^3 - 5)^5/(x^3 + 3)^3`
Differentiate the following w.r.t.x: (1 + sin2 x)2 (1 + cos2 x)3
Differentiate the following w.r.t.x:
`(e^(2x) - e^(-2x))/(e^(2x) + e^(-2x))`
Differentiate the following w.r.t.x:
`log(sqrt((1 + cos((5x)/2))/(1 - cos((5x)/2))))`
Differentiate the following w.r.t.x: `log[4^(2x)((x^2 + 5)/(sqrt(2x^3 - 4)))^(3/2)]`
Differentiate the following w.r.t.x:
`log[a^(cosx)/((x^2 - 3)^3 logx)]`
Differentiate the following w.r.t. x : tan–1(log x)
Differentiate the following w.r.t. x : cot–1(x3)
Differentiate the following w.r.t. x :
cos3[cos–1(x3)]
Differentiate the following w.r.t. x :
`cos^-1(sqrt(1 - cos(x^2))/2)`
Differentiate the following w.r.t. x : `tan^-1((cos7x)/(1 + sin7x))`
Differentiate the following w.r.t.x:
tan–1 (cosec x + cot x)
Differentiate the following w.r.t. x : `sin^-1((cossqrt(x) + sinsqrt(x))/sqrt(2))`
Differentiate the following w.r.t. x : `"cosec"^-1[(10)/(6sin(2^x) - 8cos(2^x))]`
Differentiate the following w.r.t. x :
`cos^-1((1 - x^2)/(1 + x^2))`
Differentiate the following w.r.t. x : `tan^-1((2x)/(1 - x^2))`
Differentiate the following w.r.t. x : `sin^-1((1 - x^2)/(1 + x^2))`
Differentiate the following w.r.t. x : `cot^-1((1 - sqrt(x))/(1 + sqrt(x)))`
Differentiate the following w.r.t.x:
`cot^-1((1 + 35x^2)/(2x))`
Differentiate the following w.r.t. x : `tan^-1((a + btanx)/(b - atanx))`
Differentiate the following w.r.t. x : `cot^-1((4 - x - 2x^2)/(3x + 2))`
Differentiate the following w.r.t. x :
`(x + 1)^2/((x + 2)^3(x + 3)^4`
Differentiate the following w.r.t. x : `root(3)((4x - 1)/((2x + 3)(5 - 2x)^2)`
Differentiate the following w.r.t. x : `(x^2 + 3)^(3/2).sin^3 2x.2^(x^2)`
Differentiate the following w.r.t. x:
`x^(x^x) + e^(x^x)`
Differentiate the following w.r.t. x : (logx)x – (cos x)cotx
Differentiate the following w.r.t. x :
etanx + (logx)tanx
If y is a function of x and log (x + y) = 2xy, then the value of y'(0) = ______.
If f(x) is odd and differentiable, then f′(x) is
Differentiate sin2 (sin−1(x2)) w.r. to x
Differentiate `tan^-1((8x)/(1 - 15x^2))` w.r. to x
If y = `sqrt(cos x + sqrt(cos x + sqrt(cos x + ...... ∞)`, show that `("d"y)/("d"x) = (sin x)/(1 - 2y)`
A particle moves so that x = 2 + 27t - t3. The direction of motion reverses after moving a distance of ______ units.
The differential equation of the family of curves y = `"ae"^(2(x + "b"))` is ______.
Solve `x + y (dy)/(dx) = sec(x^2 + y^2)`
Differentiate `tan^-1 (sqrt((3 - x)/(3 + x)))` w.r.t. x.