Advertisements
Advertisements
Question
Differentiate the following w.r.t. x : `((x^2 + 2x + 2)^(3/2))/((sqrt(x) + 3)^3(cosx)^x`
Solution
Let y = `((x^2 + 2x + 2)^(3/2))/((sqrt(x) + 3)^3(cosx)^x`
Then log y = `log[((x^2 + 2x + 2)^(3/2))/((sqrt(x) + 3)^3(cosx)^x)]`
= `log(x^2 + 2x + 2)^(3/2) - log(sqrt(x) + 3)^3(cosx)^x`
= `(3)/(2)log(x^2 + 2x + 2) - 3log(sqrt(x) + 3) - xlog(cosx)`
Differentiating both sides w.r.t. x, we get
`(1)/y."dy"/"dx" = (3)/(2)"d"/"dx"[log(x^2 + 2x + 2)] -3"d"/"dx"[log(sqrt(x) + 3)] - "d"/"dx"[xlog(cosx)]`
= `(3)/(2) xx (1)/(x^2 + 2x + 2)."d"/"dx"(x^2 + 2x + 2) -3 xx (1)/(sqrt(x) + 3)."d"/"dx"(sqrt(x) + 3) - {x"d"/"dx"[log(cosx)] + log(cosx)."d"/"dx"(x)}`
= `(3)/(2(x^2 + 2x + 2)) xx (2x + 2 xx 1 + 0) - (3)/(sqrt(x) + 3) xx (1/(2sqrt(x)) + 0) - {x xx (1)/cosx."d"/"dx"(cosx) + log(cosx) xx 1}`
= `(3(2x + 2))/(2(x^2 + 2x + 2)) - (3)/(2sqrt(x)(sqrt(x) + 3)) - {x xx (1)/cosx.(-sinx) + log(cosx)}`
∴ `"dy"/"dx" = y[(3(x + 1))/(x^2 + 2x + 2) - (3)/(2sqrt(x)(sqrt(x) + 3)) + xtanx - log(cosx)]`
= `((x^2 + 2x + 2)^(3/2))/((sqrt(x) + 3)^3(cosx)^x)[(3(x + 1))/(x^2 + 2x + 2) - (3)/(2sqrt(x)(sqrt(x) + 3)) + xtanx - log(cosx)]`.
APPEARS IN
RELATED QUESTIONS
Differentiate the following w.r.t.x:
`(2x^(3/2) - 3x^(4/3) - 5)^(5/2)`
Differentiate the following w.r.t.x: `(8)/(3root(3)((2x^2 - 7x - 5)^11`
Differentiate the following w.r.t.x: `sqrt(tansqrt(x)`
Differentiate the following w.r.t.x: `"cosec"(sqrt(cos x))`
Differentiate the following w.r.t.x: `e^(log[(logx)^2 - logx^2]`
Differentiate the following w.r.t.x:
`sqrt(cosx) + sqrt(cossqrt(x)`
Differentiate the following w.r.t.x:
`(e^(2x) - e^(-2x))/(e^(2x) + e^(-2x))`
Differentiate the following w.r.t.x:
`log(sqrt((1 + cos((5x)/2))/(1 - cos((5x)/2))))`
Differentiate the following w.r.t. x : tan–1(log x)
Differentiate the following w.r.t. x :
`cos^-1(sqrt(1 - cos(x^2))/2)`
Differentiate the following w.r.t. x : `"cosec"^-1((1)/(4cos^3 2x - 3cos2x))`
Differentiate the following w.r.t. x : `tan^-1((cos7x)/(1 + sin7x))`
Differentiate the following w.r.t. x : `cos^-1((sqrt(3)cosx - sinx)/(2))`
Differentiate the following w.r.t. x : `sin^-1((1 - x^2)/(1 + x^2))`
Differentiate the following w.r.t. x : cos–1(3x – 4x3)
Differentiate the following w.r.t. x : `cos^-1((e^x - e^(-x))/(e^x + e^(-x)))`
Differentiate the following w.r.t. x:
`tan^-1((2x^(5/2))/(1 - x^5))`
Differentiate the following w.r.t. x : `cot^-1((1 - sqrt(x))/(1 + sqrt(x)))`
Differentiate the following w.r.t. x :
`(x + 1)^2/((x + 2)^3(x + 3)^4`
Differentiate the following w.r.t. x : `root(3)((4x - 1)/((2x + 3)(5 - 2x)^2)`
Differentiate the following w.r.t. x : `x^(e^x) + (logx)^(sinx)`
Show that `bb("dy"/"dx" = y/x)` in the following, where a and p are constant:
xpy4 = (x + y)p+4, p ∈ N
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `cos^-1((7x^4 + 5y^4)/(7x^4 - 5y^4)) = tan^-1a`
Solve the following :
The values of f(x), g(x), f'(x) and g'(x) are given in the following table :
x | f(x) | g(x) | f'(x) | fg'(x) |
– 1 | 3 | 2 | – 3 | 4 |
2 | 2 | – 1 | – 5 | – 4 |
Match the following :
A Group – Function | B Group – Derivative |
(A)`"d"/"dx"[f(g(x))]"at" x = -1` | 1. – 16 |
(B)`"d"/"dx"[g(f(x) - 1)]"at" x = -1` | 2. 20 |
(C)`"d"/"dx"[f(f(x) - 3)]"at" x = 2` | 3. – 20 |
(D)`"d"/"dx"[g(g(x))]"at"x = 2` | 5. 12 |
If y = `"e"^(1 + logx)` then find `("d"y)/("d"x)`
Differentiate `tan^-1((8x)/(1 - 15x^2))` w.r. to x
If y = `sqrt(cos x + sqrt(cos x + sqrt(cos x + ...... ∞)`, show that `("d"y)/("d"x) = (sin x)/(1 - 2y)`
If y = `1 + x + x^2/(2!) + x^3/(3!) + x^4/(4!) + .....,` then `(d^2y)/(dx^2)` = ______
A particle moves so that x = 2 + 27t - t3. The direction of motion reverses after moving a distance of ______ units.
If x = p sin θ, y = q cos θ, then `dy/dx` = ______
The value of `d/(dx)[tan^-1((a - x)/(1 + ax))]` is ______.
Diffierentiate: `tan^-1((a + b cos x)/(b - a cos x))` w.r.t.x.