Advertisements
Advertisements
Question
Differentiate the following w.r.t. x : `root(3)((4x - 1)/((2x + 3)(5 - 2x)^2)`
Solution
Let y = `root(3)((4x - 1)/((2x + 3)(5 - 2x)^2)`
Then log y = `log[(4x - 1)/((2x + 3)(5 - 2x)^2)]^(1/3)`
= `(1)/(3)log[(4x - 1)/((2x + 3)(5 - 2x)^2)]`
= `(1)/(3)[log(4x - 1) - log(2x + 3)(5 - 2x)^2]`
= `(1)/(3)log(4x - 1) - (1)/(3)log(2x + 3) - (2)/(3)log(5 - 2x)`
Differentiating both sides w.r.t. x, we get
`(1)/y."dy"/"dx" = (1)/(3)"d"/"dx"[log(4x - 1)] - (1)/(3)"d"/"dx"[log(2x + 3)] - (2)/(3)"d"/"dx"[log(5 - 2x)]`
= `(1)/(3) xx (1)/(4x - 1)."d"/"dx"(4x - 1) - (1)/(3) xx (1)/(2x + 3)."d"/"dx"(2x + 3) - (2)/(3) xx (1)/(5 - 2x)."d"/"dx"(5 - 2x)`
= `(1)/(3(4x - 1)). (4 xx 1 - 0) - (1)/(3(2x + 3)).(2 xx 1 + 0) - (2)/(3(5 - 2x)).(0 - 2 xx 1)`
∴ `"dy"/"dx" = y[(4)/(3(4x - 1)) - (2)/(3(2x + 3)) + (4)/(3(5 - 2x))]`
= `root(3)((4x - 1)/((2x + 3)(5 - 2x)^2))[(4)/(3(4x - 1)) - (2)/(3(2x + 3)) + (4)/(3(5 - 2x))]`.
APPEARS IN
RELATED QUESTIONS
Differentiate the following w.r.t.x:
`sqrt(x^2 + sqrt(x^2 + 1)`
Differentiate the following w.r.t.x: `(8)/(3root(3)((2x^2 - 7x - 5)^11`
Differentiate the following w.r.t.x: `e^(log[(logx)^2 - logx^2]`
Differentiate the following w.r.t.x:
(x2 + 4x + 1)3 + (x3− 5x − 2)4
Differentiate the following w.r.t.x: `x/(sqrt(7 - 3x)`
Differentiate the following w.r.t.x: `(e^sqrt(x) + 1)/(e^sqrt(x) - 1)`
Differentiate the following w.r.t.x: log[tan3x.sin4x.(x2 + 7)7]
Differentiate the following w.r.t.x:
`log(sqrt((1 - cos3x)/(1 + cos3x)))`
Differentiate the following w.r.t. x : `tan^-1(sqrt(x))`
Differentiate the following w.r.t. x : `sin^4[sin^-1(sqrt(x))]`
Differentiate the following w.r.t. x : `"cosec"^-1[1/cos(5^x)]`
Differentiate the following w.r.t. x : `cos^-1(sqrt((1 + cosx)/2))`
Differentiate the following w.r.t. x : `"cosec"^-1((1)/(4cos^3 2x - 3cos2x))`
Differentiate the following w.r.t. x : `cot^-1((sin3x)/(1 + cos3x))`
Differentiate the following w.r.t. x : `cos^-1((sqrt(3)cosx - sinx)/(2))`
Differentiate the following w.r.t. x :
`cos^-1 ((1 - 9^x))/((1 + 9^x)`
Differentiate the following w.r.t. x : `tan^-1((8x)/(1 - 15x^2))`
Differentiate the following w.r.t. x : `tan^-1((a + btanx)/(b - atanx))`
Differentiate the following w.r.t. x : `cot^-1((a^2 - 6x^2)/(5ax))`
Differentiate the following w.r.t. x : `cot^-1((4 - x - 2x^2)/(3x + 2))`
Differentiate the following w.r.t. x: `x^(tan^(-1)x`
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `sec((x^5 + y^5)/(x^5 - y^5))` = a2
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `cos^-1((7x^4 + 5y^4)/(7x^4 - 5y^4)) = tan^-1a`
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `e^((x^7 - y^7)/(x^7 + y^7)` = a
If y = sin−1 (2x), find `("d"y)/(""d"x)`
If y = `"e"^(1 + logx)` then find `("d"y)/("d"x)`
Differentiate `cot^-1((cos x)/(1 + sinx))` w.r. to x
Differentiate `tan^-1((8x)/(1 - 15x^2))` w.r. to x
If y = `sin^-1[("a"cosx - "b"sinx)/sqrt("a"^2 + "b"^2)]`, then find `("d"y)/("d"x)`
If the function f(x) = `(log (1 + "ax") - log (1 - "bx))/x, x ≠ 0` is continuous at x = 0 then, f(0) = _____.
If `t = v^2/3`, then `(-v/2 (df)/dt)` is equal to, (where f is acceleration) ______
If x2 + y2 - 2axy = 0, then `dy/dx` equals ______
If y = cosec x0, then `"dy"/"dx"` = ______.
Solve `x + y (dy)/(dx) = sec(x^2 + y^2)`
Find `(dy)/(dx)`, if x3 + x3y + xy2 + y3 = 81
The value of `d/(dx)[tan^-1((a - x)/(1 + ax))]` is ______.