English

Differentiate the following w.r.t.x: (x2 + 4x + 1)3 + (x3− 5x − 2)4 - Mathematics and Statistics

Advertisements
Advertisements

Question

Differentiate the following w.r.t.x:

(x2 + 4x + 1)3 + (x3− 5x − 2)4 

Sum

Solution

Let y = (x2 + 4x + 1)3 + (x3− 5x − 2)4

Differentiating w.r.t. x, we get

`"dy"/"dx" = "d"/"dx"[(x^2 + 4x + 1)^3 + (x^3 - 5x - 2)^4]`

`= "d"/"dx"(x^2 + 4x + 1)^3 + "d"/"dx"(x^3 - 5x - 2)^4`

`= 3(x^2 + 4x + 1)^2."d"/"dx"(x^2 + 4x + 1) + 4(x^3 - 5x - 2)^3. "d"/"dx"(x^3 - 5x - 2)`

= 3(x2 + 4x + 1)2. (2x + 4 × 1 + 0) + 4(x3 – 5x – 2)3. (3x2 – 5 × 1 – 0)

= 3(2x + 4)(x2 + 4x + 1)2 + 4(3x2 – 5)(x3 – 5x – 2)3

= 3 × 2(x + 2)(x2 + 4x + 1)2 + 4(3x2 – 5)(x3 – 5x – 2)3

= 6(x + 2)(x2 + 4x + 1)2 + 4(3x2 – 5)(x3 – 5x – 2)3

shaalaa.com
Differentiation
  Is there an error in this question or solution?
Chapter 1: Differentiation - Exercise 1.1 [Page 12]

RELATED QUESTIONS

Differentiate the following w.r.t.x:

(x3 – 2x – 1)5


Differentiate the following w.r.t.x: `sqrt(x^2 + 4x - 7)`


Differentiate the following w.r.t.x: `sqrt(tansqrt(x)`


Differentiate the following w.r.t.x: `"cosec"(sqrt(cos x))`


Differentiate the following w.r.t.x: log[cos(x3 – 5)]


Differentiate the following w.r.t.x: sec[tan (x4 + 4)]


Differentiate the following w.r.t.x: `log[sec (e^(x^2))]`


Differentiate the following w.r.t.x: [log {log(logx)}]2


Differentiate the following w.r.t.x: log[tan3x.sin4x.(x2 + 7)7]


Differentiate the following w.r.t.x:

`log(sqrt((1 + cos((5x)/2))/(1 - cos((5x)/2))))`


Differentiate the following w.r.t.x:

`(x^2 + 2)^4/(sqrt(x^2 + 5)`


Differentiate the following w.r.t. x :

cos3[cos–1(x3)]


Differentiate the following w.r.t. x :

`cos^-1(sqrt(1 - cos(x^2))/2)`


Differentiate the following w.r.t. x : `tan^-1[(1 - tan(x/2))/(1 + tan(x/2))]`


Differentiate the following w.r.t. x : `cos^-1((sqrt(3)cosx - sinx)/(2))`


Differentiate the following w.r.t. x : `sin^-1((cossqrt(x) + sinsqrt(x))/sqrt(2))`


Differentiate the following w.r.t. x : `cos^-1((3cos3x - 4sin3x)/5)`


Differentiate the following w.r.t. x : `cos^-1((e^x -  e^(-x))/(e^x +  e^(-x)))`


Differentiate the following w.r.t. x :

`cos^-1  ((1 - 9^x))/((1 + 9^x)`


Differentiate the following w.r.t. x : `cot^-1((1 - sqrt(x))/(1 + sqrt(x)))`


Differentiate the following w.r.t. x :

`tan^-1((5 -x)/(6x^2 - 5x - 3))`


Differentiate the following w.r.t. x : `cot^-1((4 - x - 2x^2)/(3x + 2))`


Differentiate the following w.r.t. x : `root(3)((4x - 1)/((2x + 3)(5 - 2x)^2)`


Differentiate the following w.r.t. x : `((x^2 + 2x + 2)^(3/2))/((sqrt(x) + 3)^3(cosx)^x`


Differentiate the following w.r.t. x : `(x^5.tan^3 4x)/(sin^2 3x)`


Differentiate the following w.r.t. x: xe + xx + ex + ee 


Differentiate the following w.r.t. x : `10^(x^(x)) + x^(x(10)) + x^(10x)`


Differentiate the following w.r.t. x : `[(tanx)^(tanx)]^(tanx) "at"  x = pi/(4)`


Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `sec((x^5 + y^5)/(x^5 - y^5))` = a2 


Show that `"dy"/"dx" = y/x` in the following, where a and p are constants: `log((x^20 - y^20)/(x^20 + y^20))` = 20


Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `e^((x^7 - y^7)/(x^7 + y^7)` = a


If y = `"e"^(1 + logx)` then find `("d"y)/("d"x)` 


Differentiate sin2 (sin−1(x2)) w.r. to x


Differentiate `cot^-1((cos x)/(1 + sinx))` w.r. to x


If the function f(x) = `(log (1 + "ax") - log (1 - "bx))/x, x ≠ 0` is continuous at x = 0 then, f(0) = _____.


If y = `1 + x + x^2/(2!) + x^3/(3!) + x^4/(4!) + .....,` then `(d^2y)/(dx^2)` = ______


The weight W of a certain stock of fish is given by W = nw, where n is the size of stock and w is the average weight of a fish. If n and w change with time t as n = 2t2 + 3 and w = t2 - t + 2, then the rate of change of W with respect to t at t = 1 is ______ 


If y = cosec x0, then `"dy"/"dx"` = ______.


If y = log (sec x + tan x), find `dy/dx`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×