Advertisements
Advertisements
Question
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `sec((x^5 + y^5)/(x^5 - y^5))` = a2
Solution
`sec((x^5 + y^5)/(x^5 - y^5))` = a2
∴ `(x^5 + y^5)/(x^5 - y^5) = sec^-1(a^2)` = k
∴ x5 + y5 = kx5 – ky5
∴ (1 + k)y5 = (k – 1)x5
∴ `y^5/x^5 = (k - 1)/(k + 1)`
∴ `y/x = ((k - 1)/(k + 1))^(1/5)`, a constant
Differentiating both sides w.r.t. x, we get
`"d"/"dx"(y/x)` = 0
∴ `(x."dy"/"dx" - y."d"/"dx"(x))/(x^2)` = 0
∴ `x"dy"/"dx" - y xx 1` = 0
∴ `"dy"/"dx" = y/x.`
Alternative Method :
`sec((x^5 + y^5)/(x^5 - y^5))` = a2
∴ `(x^5 + y^5)/(x^5 - y^5)` = sec–1a2 = k ...(Say)
∴ x5 + y5 = kx5 – ky5
∴ (1 + k)y5 = (k – 1)x5
∴ `y^5/x^5 = (k - 1)/(k + 1)` ...(1)
∴ y5 = k'x5, where k' = `(k - 1)/(k + 1)`
Differentiating both sides w.r.t. x, we get
`5y^4"dy"/"dx"` = k' x 5x4
∴ `"dy"/"dx" = k'.x^4/y^4`
∴ `"dy"/"dx" = ((k - 1)/(k + 1)).x^4/y^4`
= `y^5/x^5 xx x^4/y^4` ...[By (1)]
∴ `"dy"/"dx" = y/x`.
APPEARS IN
RELATED QUESTIONS
Differentiate the following w.r.t.x: `log[tan(x/2)]`
Differentiate the following w.r.t.x: `sqrt(tansqrt(x)`
Differentiate the following w.r.t.x: `sinsqrt(sinsqrt(x)`
Differentiate the following w.r.t.x: `log_(e^2) (log x)`
Differentiate the following w.r.t.x: (1 + 4x)5 (3 + x −x2)8
Differentiate the following w.r.t.x:
`(e^(2x) - e^(-2x))/(e^(2x) + e^(-2x))`
Differentiate the following w.r.t.x: log[tan3x.sin4x.(x2 + 7)7]
Differentiate the following w.r.t.x:
`log(sqrt((1 + cos((5x)/2))/(1 - cos((5x)/2))))`
Differentiate the following w.r.t.x: `log(sqrt((1 - sinx)/(1 + sinx)))`
Differentiate the following w.r.t.x: `log[4^(2x)((x^2 + 5)/(sqrt(2x^3 - 4)))^(3/2)]`
Differentiate the following w.r.t.x: `log[(ex^2(5 - 4x)^(3/2))/root(3)(7 - 6x)]`
Differentiate the following w.r.t. x : cosec–1 (e–x)
Differentiate the following w.r.t. x :
`sin^-1(sqrt((1 + x^2)/2))`
Differentiate the following w.r.t. x : `sin^-1(x^(3/2))`
Differentiate the following w.r.t. x : `"cosec"^-1((1)/(4cos^3 2x - 3cos2x))`
Differentiate the following w.r.t. x : `cot^-1((sin3x)/(1 + cos3x))`
Differentiate the following w.r.t. x : `cos^-1((e^x - e^(-x))/(e^x + e^(-x)))`
Differentiate the following w.r.t. x :
`sin^-1(4^(x + 1/2)/(1 + 2^(4x)))`
Differentiate the following w.r.t. x : `sin^-1 ((1 - 25x^2)/(1 + 25x^2))`
Differentiate the following w.r.t. x:
`tan^-1((2x^(5/2))/(1 - x^5))`
Differentiate the following w.r.t. x : `cot^-1((1 - sqrt(x))/(1 + sqrt(x)))`
Differentiate the following w.r.t. x : `tan^-1((2sqrt(x))/(1 + 3x))`
Differentiate the following w.r.t. x : `tan^-1((a + btanx)/(b - atanx))`
Differentiate the following w.r.t. x : `(x^2 + 3)^(3/2).sin^3 2x.2^(x^2)`
Differentiate the following w.r.t. x : `((x^2 + 2x + 2)^(3/2))/((sqrt(x) + 3)^3(cosx)^x`
Differentiate the following w.r.t. x : `(x^5.tan^3 4x)/(sin^2 3x)`
Differentiate the following w.r.t. x : `x^(e^x) + (logx)^(sinx)`
Differentiate the following w.r.t. x :
etanx + (logx)tanx
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : x7.y5 = (x + y)12
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `sin((x^3 - y^3)/(x^3 + y^3))` = a3
If y = `"e"^(1 + logx)` then find `("d"y)/("d"x)`
If y = `1 + x + x^2/(2!) + x^3/(3!) + x^4/(4!) + .....,` then `(d^2y)/(dx^2)` = ______
If y = `(3x^2 - 4x + 7.5)^4, "then" dy/dx` is ______
Let f(x) = `(1 - tan x)/(4x - pi), x ne pi/4, x ∈ [0, pi/2]`. If f(x) is continuous in `[0, pi/2]`, then f`(pi/4)` is ______.
If x = p sin θ, y = q cos θ, then `dy/dx` = ______