English

Differentiate the following w.r.t.x: log(1-sinx1+sinx) - Mathematics and Statistics

Advertisements
Advertisements

Question

Differentiate the following w.r.t.x: `log(sqrt((1 - sinx)/(1 + sinx)))`

Sum

Solution

Let y = `log(sqrt((1 - sinx)/(1 + sinx)))`

= `log(sqrt((1 - sinx)/(1 + sinx) xx (1 - sinx)/(1 - sinx)))`

= `log(sqrt((1 - sinx)^2/(1 - sin^2x)))`

= `log(sqrt((1 - sinx)^2/(cos^2x)))`

= `log((1 - sinx)/(cosx))`

= `log(1/cosx - sinx/cosx)`
= log(sec x – tan x)
Differentiating w.r.t. x, we get
`"dy"/"dx" = "d"/"dx"[log(secx - tanx)]`

= `(1)/(secx - tanx)."d"/"dx"(secx - tanx)`

= `(1)/(secx - tanx) xx (secx tanx - sec^2x)`

= `(-secx(secx - tanx))/(secx - tanx)`
= –sec x.

shaalaa.com
Differentiation
  Is there an error in this question or solution?
Chapter 1: Differentiation - Exercise 1.1 [Page 12]

RELATED QUESTIONS

Differentiate the following w.r.t.x:

`sqrt(x^2 + sqrt(x^2 + 1)`


Differentiate the following w.r.t.x:

`(sqrt(3x - 5) - 1/sqrt(3x - 5))^5`


Differentiate the following w.r.t.x: cot3[log(x3)]


Differentiate the following w.r.t.x:

sin2x2 – cos2x2 


Differentiate the following w.r.t.x:

`(x^3 - 5)^5/(x^3 + 3)^3`


Differentiate the following w.r.t.x: (1 + sin2 x)2 (1 + cos2 x)3 


Differentiate the following w.r.t.x: `(e^sqrt(x) + 1)/(e^sqrt(x) - 1)`


Differentiate the following w.r.t.x:

`log(sqrt((1 - cos3x)/(1 + cos3x)))`


Differentiate the following w.r.t. x : cosec–1 (e–x)


Differentiate the following w.r.t. x : `cot^-1[cot(e^(x^2))]`


Differentiate the following w.r.t. x : `"cosec"^-1[1/cos(5^x)]`


Differentiate the following w.r.t. x : `tan^-1[(1 - tan(x/2))/(1 + tan(x/2))]`


Differentiate the following w.r.t. x : `cot^-1((sin3x)/(1 + cos3x))`


Differentiate the following w.r.t. x : `tan^-1((cos7x)/(1 + sin7x))`


Differentiate the following w.r.t.x:

tan–1 (cosec x + cot x)


Differentiate the following w.r.t. x : `sin^-1((4sinx + 5cosx)/sqrt(41))`


Differentiate the following w.r.t. x : `cos^-1((3cos3x - 4sin3x)/5)`


Differentiate the following w.r.t. x : `"cosec"^-1[(10)/(6sin(2^x) - 8cos(2^x))]`


Differentiate the following w.r.t. x :

`cos^-1((1 - x^2)/(1 + x^2))`


Differentiate the following w.r.t. x : `sin^-1(2xsqrt(1 - x^2))`


Differentiate the following w.r.t. x : cos–1(3x – 4x3)


Differentiate the following w.r.t. x :

`cos^-1  ((1 - 9^x))/((1 + 9^x)`


Differentiate the following w.r.t. x : `tan^-1((a + btanx)/(b - atanx))`


Differentiate the following w.r.t. x : `(x^2 + 3)^(3/2).sin^3 2x.2^(x^2)`


Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `cos^-1((7x^4 + 5y^4)/(7x^4 - 5y^4)) = tan^-1a`


If y is a function of x and log (x + y) = 2xy, then the value of y'(0) = ______.


Differentiate sin2 (sin−1(x2)) w.r. to x


If y = `sqrt(cos x + sqrt(cos x + sqrt(cos x + ...... ∞)`, show that `("d"y)/("d"x) = (sin x)/(1 - 2y)`


If x = `sqrt("a"^(sin^-1 "t")), "y" = sqrt("a"^(cos^-1 "t")), "then" "dy"/"dx"` = ______


A particle moves so that x = 2 + 27t - t3. The direction of motion reverses after moving a distance of ______ units.


If f(x) = `(3x + 1)/(5x - 4)` and t = `(5 + 3x)/(x - 4)`, then f(t) is ______ 


If x2 + y2 - 2axy = 0, then `dy/dx` equals ______ 


If y = cosec x0, then `"dy"/"dx"` = ______.


The volume of a spherical balloon is increasing at the rate of 10 cubic centimetre per minute. The rate of change of the surface of the balloon at the instant when its radius is 4 centimetres, is ______


If x = eθ, (sin θ – cos θ), y = eθ (sin θ + cos θ) then `dy/dx` at θ = `π/4` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×