Advertisements
Advertisements
Question
Differentiate the following w.r.t. x : `"cosec"^-1[(10)/(6sin(2^x) - 8cos(2^x))]`
Solution
Let y = `"cosec"^-1[(10)/(6sin(2^x) - 8cos(2^x))]`
= `sin^-1[(6sin(2^x) - 8cos(2^x))/(10)] ...[∵ "cosec"^-1 x = sin^-1(1/x)]`
= `sin^-1[{sin(2^x)}(6/10) - {cos(2^x)}(8/10)]`
Since, `(6/10)^2 + (8/10)^2 = (36)/(100) +(64)/(100)` = 1,
we can write, `(6)/(10) = cos∞ and (8)/(10) = sin∞`.
∴ y = sin–1[sin(2x).cos∞ – cos(2x).sin∞]
= sin–1[sin(2x – ∞)]
= 2x – ∞, where ∞ is a constant
Differentiating w.r.t. x, we get
`"dy"/"dx" = "d"/"dx"(2^x - ∞ )`
= `"d"/"dx"(2^x) - "d"/"dx"(∞)`
= 2x.log2 – 0
= 2x.log2
APPEARS IN
RELATED QUESTIONS
Differentiate the following w.r.t.x:
`sqrt(x^2 + sqrt(x^2 + 1)`
Differentiate the following w.r.t.x: `(8)/(3root(3)((2x^2 - 7x - 5)^11`
Differentiate the following w.r.t.x:
`(sqrt(3x - 5) - 1/sqrt(3x - 5))^5`
Differentiate the following w.r.t.x: cot3[log(x3)]
Differentiate the following w.r.t.x:
log (sec 3x+ tan 3x)
Differentiate the following w.r.t.x: log[tan3x.sin4x.(x2 + 7)7]
Differentiate the following w.r.t.x: `log[4^(2x)((x^2 + 5)/(sqrt(2x^3 - 4)))^(3/2)]`
Differentiate the following w.r.t. x : `cot^-1[cot(e^(x^2))]`
Differentiate the following w.r.t. x : `tan^-1[(1 - tan(x/2))/(1 + tan(x/2))]`
Differentiate the following w.r.t. x : `cot^-1((sin3x)/(1 + cos3x))`
Differentiate the following w.r.t.x:
tan–1 (cosec x + cot x)
Differentiate the following w.r.t. x :
`cot^-1[(sqrt(1 + sin ((4x)/3)) + sqrt(1 - sin ((4x)/3)))/(sqrt(1 + sin ((4x)/3)) - sqrt(1 - sin ((4x)/3)))]`
Differentiate the following w.r.t. x : `cos^-1((sqrt(3)cosx - sinx)/(2))`
Differentiate the following w.r.t. x :
`sin^-1(4^(x + 1/2)/(1 + 2^(4x)))`
Differentiate the following w.r.t. x : `tan^-1((2sqrt(x))/(1 + 3x))`
Differentiate the following w.r.t. x : `tan^-1((2^x)/(1 + 2^(2x + 1)))`
Differentiate the following w.r.t. x : `tan^-1((a + btanx)/(b - atanx))`
Differentiate the following w.r.t. x :
`(x + 1)^2/((x + 2)^3(x + 3)^4`
Differentiate the following w.r.t. x : `(x^2 + 3)^(3/2).sin^3 2x.2^(x^2)`
Differentiate the following w.r.t. x : `((x^2 + 2x + 2)^(3/2))/((sqrt(x) + 3)^3(cosx)^x`
Differentiate the following w.r.t. x: `x^(tan^(-1)x`
Differentiate the following w.r.t. x : (sin xx)
Differentiate the following w.r.t. x :
etanx + (logx)tanx
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `sec((x^5 + y^5)/(x^5 - y^5))` = a2
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `cos^-1((7x^4 + 5y^4)/(7x^4 - 5y^4)) = tan^-1a`
Differentiate y = etanx w.r. to x
If y = sin−1 (2x), find `("d"y)/(""d"x)`
Differentiate `sin^-1((2cosx + 3sinx)/sqrt(13))` w.r. to x
If `t = v^2/3`, then `(-v/2 (df)/dt)` is equal to, (where f is acceleration) ______
The differential equation of the family of curves y = `"ae"^(2(x + "b"))` is ______.
Let f(x) = `(1 - tan x)/(4x - pi), x ne pi/4, x ∈ [0, pi/2]`. If f(x) is continuous in `[0, pi/2]`, then f`(pi/4)` is ______.
If y = cosec x0, then `"dy"/"dx"` = ______.
Solve `x + y (dy)/(dx) = sec(x^2 + y^2)`
If `cos((x^2 - y^2)/(x^2 + y^2))` = log a, show that `dy/dx = y/x`
Diffierentiate: `tan^-1((a + b cos x)/(b - a cos x))` w.r.t.x.