English

Differentiate y = etanx w.r. to x - Mathematics and Statistics

Advertisements
Advertisements

Question

Differentiate y = etanx w.r. to x

Sum

Solution

y = etanx 

∴ `("d"y)/("d"x) = "d"/("d"x) ("e"^(tanx))`

= `"e"^(tanx) * "d"/("d"x)(tan x)`

= `"e"^(tan x) * sec^2x`

shaalaa.com
Differentiation
  Is there an error in this question or solution?
Chapter 2.1: Differentiation - Very Short Answers

APPEARS IN

RELATED QUESTIONS

Differentiate the following w.r.t.x:

(x3 – 2x – 1)5


Differentiate the following w.r.t.x:

`(sqrt(3x - 5) - 1/sqrt(3x - 5))^5`


Differentiate the following w.r.t.x: cot3[log(x3)]


Differentiate the following w.r.t.x: cos2[log(x2 + 7)]


Differentiate the following w.r.t.x: `x/(sqrt(7 - 3x)`


Differentiate the following w.r.t.x:

`sqrt(cosx) + sqrt(cossqrt(x)`


Differentiate the following w.r.t.x:

`(x^2 + 2)^4/(sqrt(x^2 + 5)`


Differentiate the following w.r.t. x :

`sin^-1(sqrt((1 + x^2)/2))`


Differentiate the following w.r.t. x : cos–1(1 –x2)


Differentiate the following w.r.t. x : `"cosec"^-1[1/cos(5^x)]`


Differentiate the following w.r.t. x : `cos^-1(sqrt((1 + cosx)/2))`


Differentiate the following w.r.t. x : `cos^-1((sqrt(3)cosx - sinx)/(2))`


Differentiate the following w.r.t. x : `sin^-1((cossqrt(x) + sinsqrt(x))/sqrt(2))`


Differentiate the following w.r.t. x :

`cos^-1[(3cos(e^x) + 2sin(e^x))/sqrt(13)]`


Differentiate the following w.r.t. x : `"cosec"^-1[(10)/(6sin(2^x) - 8cos(2^x))]`


Differentiate the following w.r.t. x : `sin^-1((1 - x^2)/(1 + x^2))`


Differentiate the following w.r.t. x : `sin^-1(2xsqrt(1 - x^2))`


Differentiate the following w.r.t. x : `cos^-1((e^x -  e^(-x))/(e^x +  e^(-x)))`


Differentiate the following w.r.t. x : `sin^-1  ((1 - 25x^2)/(1 + 25x^2))`


Differentiate the following w.r.t.x:

`cot^-1((1 + 35x^2)/(2x))`


Differentiate the following w.r.t. x : `tan^-1((a + btanx)/(b - atanx))`


Differentiate the following w.r.t. x :

`tan^-1((5 -x)/(6x^2 - 5x - 3))`


Differentiate the following w.r.t. x : `cot^-1((4 - x - 2x^2)/(3x + 2))`


Differentiate the following w.r.t. x : (sin xx)


Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `e^((x^7 - y^7)/(x^7 + y^7)` = a


If y = sin−1 (2x), find `("d"y)/(""d"x)` 


If f(x) is odd and differentiable, then f′(x) is


Differentiate `sin^-1((2cosx + 3sinx)/sqrt(13))` w.r. to x


Differentiate `tan^-1((8x)/(1 - 15x^2))` w.r. to x


If y = `sin^-1[("a"cosx - "b"sinx)/sqrt("a"^2 + "b"^2)]`, then find `("d"y)/("d"x)`


y = {x(x - 3)}2 increases for all values of x lying in the interval.


If y = `1 + x + x^2/(2!) + x^3/(3!) + x^4/(4!) + .....,` then `(d^2y)/(dx^2)` = ______


A particle moves so that x = 2 + 27t - t3. The direction of motion reverses after moving a distance of ______ units.


If x = eθ, (sin θ – cos θ), y = eθ (sin θ + cos θ) then `dy/dx` at θ = `π/4` is ______.


Let f(x) be a polynomial function of the second degree. If f(1) = f(–1) and a1, a2, a3 are in AP, then f’(a1), f’(a2), f’(a3) are in ______.


If y = log (sec x + tan x), find `dy/dx`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×