English

Differentiate the following w.r.t.x: (x3-5)5(x3+3)3 - Mathematics and Statistics

Advertisements
Advertisements

Question

Differentiate the following w.r.t.x:

`(x^3 - 5)^5/(x^3 + 3)^3`

Sum

Solution

Let y = `(x^3 - 5)^5/(x^3 + 3)^3`

Differentiating w.r.t.x, we get

`"dy"/"dx" = "d"/"dx"[(x^3 - 5)^5/(x^3 + 3)^3]`

`"dy"/"dx" = [(x^3 + 3)^3 × "d"/"dx"(x^3 - 5)^5 - (x^3 - 5)^5 "d"/"dx" (x^3 + 3)^3]/[(x^3 + 3)^3]^2`

`"dy"/"dx" = [(x^3 + 3)^3 × 5(x^3 - 5)^4 × "d"/"dx"(x^3 - 5) - (x^3 - 5)^5 × 3(x^3 + 3)^2 × "d"/"dx" (x^3 + 3)]/(x^3 + 3)^6`

`"dy"/"dx" = [(x^3 + 3)^3 × 5(x^3 - 5)^4 × (3x^2 - 0) - (x^3 - 5)^5 × 3(x^3 + 3)^2 × (3x^2 + 0)]/(x^3 + 3)^6`

`"dy"/"dx" = [3x^2(x^3 + 3)^2(x^3 - 5)^4[5(x^3 + 3) - 3(x^3 - 5)]]/(x^3 + 3)^6`

`"dy"/"dx" = [3x^2(x^3 + 3)^2(x^3 - 5)^4[5x^3 + 15 - 3x^3 + 15]]/(x^3 + 3)^6`

`"dy"/"dx" = [3x^2cancel((x^3 + 3)^2)(x^3 - 5)^4(2x^3 + 30)]/(x^3 + 3)^(cancel(6)4)`

`"dy"/"dx" = [3x^2(x^3 - 5)^4(2x^3 + 30)]/(x^3 + 3)^4`

`"dy"/"dx" = [3x^2(x^3 - 5)^4 . 2(x^3 + 15)]/(x^3 + 3)^4`

`"dy"/"dx" = [6x^2(x^3 + 15)(x^3 - 5)^4]/(x^3 + 3)^4`

shaalaa.com
Differentiation
  Is there an error in this question or solution?
Chapter 1: Differentiation - Exercise 1.1 [Page 12]

RELATED QUESTIONS

Differentiate the following w.r.t.x:

`sqrt(x^2 + sqrt(x^2 + 1)`


Differentiate the following w.r.t.x: cos(x2 + a2)


Differentiate the following w.r.t.x: cos2[log(x2 + 7)]


Differentiate the following w.r.t.x:

tan[cos(sinx)]


Differentiate the following w.r.t.x:

sin2x2 – cos2x2 


Differentiate the following w.r.t.x: log[tan3x.sin4x.(x2 + 7)7]


Differentiate the following w.r.t.x: `log[(ex^2(5 - 4x)^(3/2))/root(3)(7 - 6x)]`


Differentiate the following w.r.t.x:

`(x^2 + 2)^4/(sqrt(x^2 + 5)`


Differentiate the following w.r.t. x : `cot^-1[cot(e^(x^2))]`


Differentiate the following w.r.t. x : `tan^-1[(1 + cos(x/3))/(sin(x/3))]`


Differentiate the following w.r.t. x :

`cot^-1[(sqrt(1 + sin  ((4x)/3)) + sqrt(1 - sin  ((4x)/3)))/(sqrt(1 + sin  ((4x)/3)) - sqrt(1 - sin  ((4x)/3)))]`


Differentiate the following w.r.t. x : `cos^-1((3cos3x - 4sin3x)/5)`


Differentiate the following w.r.t. x : `tan^-1((2x)/(1 - x^2))`


Differentiate the following w.r.t. x : cos–1(3x – 4x3)


Differentiate the following w.r.t. x :

`sin^(−1) ((1 − x^3)/(1 + x^3))`


Differentiate the following w.r.t. x:

`tan^-1((2x^(5/2))/(1 - x^5))`


Differentiate the following w.r.t. x : `tan^-1((2^x)/(1 + 2^(2x + 1)))`


Differentiate the following w.r.t. x : `tan^-1((a + btanx)/(b - atanx))`


Differentiate the following w.r.t. x : `cot^-1((a^2 - 6x^2)/(5ax))`


Differentiate the following w.r.t. x :

`tan^-1((5 -x)/(6x^2 - 5x - 3))`


Differentiate the following w.r.t. x :

`(x +  1)^2/((x + 2)^3(x + 3)^4`


Differentiate the following w.r.t. x : `((x^2 + 2x + 2)^(3/2))/((sqrt(x) + 3)^3(cosx)^x`


Differentiate the following w.r.t. x : (sin x)x 


Differentiate the following w.r.t. x:

`x^(x^x) + e^(x^x)`


Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : x7.y5 = (x + y)12 


Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `sec((x^5 + y^5)/(x^5 - y^5))` = a2 


Solve the following : 

The values of f(x), g(x), f'(x) and g'(x) are given in the following table :

x f(x) g(x) f'(x) fg'(x)
– 1 3 2 – 3 4
2 2 – 1 – 5 – 4

Match the following :

A Group – Function B Group – Derivative
(A)`"d"/"dx"[f(g(x))]"at" x = -1` 1.  – 16
(B)`"d"/"dx"[g(f(x) - 1)]"at" x = -1` 2.     20
(C)`"d"/"dx"[f(f(x) - 3)]"at" x = 2` 3.  – 20
(D)`"d"/"dx"[g(g(x))]"at"x = 2` 5.     12

Differentiate y = `sqrt(x^2 + 5)` w.r. to x


If y = `"e"^(1 + logx)` then find `("d"y)/("d"x)` 


Differentiate sin2 (sin−1(x2)) w.r. to x


Differentiate `cot^-1((cos x)/(1 + sinx))` w.r. to x


Differentiate `tan^-1((8x)/(1 - 15x^2))` w.r. to x


If y = cosec x0, then `"dy"/"dx"` = ______.


If y = log (sec x + tan x), find `dy/dx`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×