English

Differentiate the following w.r.t. x : sin−1(1−x31+x3) - Mathematics and Statistics

Advertisements
Advertisements

Question

Differentiate the following w.r.t. x :

`sin^(−1) ((1 − x^3)/(1 + x^3))`

Sum

Solution

Let `y = sin^(−1)  ((1 − x^3)/(1 + x^3))`

`y = sin^(−1)[(1 − (x^(3/2))^2)/(1 + (x^(3/2))^2)]`

Put `x^(3/2) = tan θ. "Then"  θ = tan^(−1)(x^(3/2))`

∴ y = `sin^(−1)((1 − tan^2θ)/(1 + tan^2θ))`

∴ y = sin−1(cos 2θ)

∴ y = `[sin(π/2 − 2θ)]`

∴ y = `π/(2) − 2θ`

∴ y = `π/(2) − 2tan^(−1)(x^(3/2))`

Differentiating w.r.t. x, we get

`dy/dx = d/dx [π/2 − 2tan^(−1) (x^(3/2))]`

`dy/dx = d/dx (π/2) − 2d/dx [tan^(−1) (x^(3/2))]`

`dy/dx = 0 − 2 × (1)/(1 + (x^(3/2))^2). d/dx (x^(3/2))`

`dy/dx = − (2)/(1 + x^3) × (3)/(2)x^(1/2)`

`dy/dx = −(3sqrt(x))/(1 + x^3)`

shaalaa.com
Differentiation
  Is there an error in this question or solution?
Chapter 1: Differentiation - Exercise 1.2 [Page 30]

RELATED QUESTIONS

Differentiate the following w.r.t.x: `(8)/(3root(3)((2x^2 - 7x - 5)^11`


Differentiate the following w.r.t.x: cos(x2 + a2)


Differentiate the following w.r.t.x:

`sqrt(e^((3x + 2) +  5)`


Differentiate the following w.r.t.x: cot3[log(x3)]


Differentiate the following w.r.t.x: `"cosec"(sqrt(cos x))`


Differentiate the following w.r.t.x: cos2[log(x2 + 7)]


Differentiate the following w.r.t.x: sec[tan (x4 + 4)]


Differentiate the following w.r.t.x: [log {log(logx)}]2


Differentiate the following w.r.t.x:

(x2 + 4x + 1)3 + (x3− 5x − 2)4 


Differentiate the following w.r.t.x: (1 + 4x)5 (3 + x −x2)


Differentiate the following w.r.t.x:

`(x^3 - 5)^5/(x^3 + 3)^3`


Differentiate the following w.r.t.x: `log[4^(2x)((x^2 + 5)/(sqrt(2x^3 - 4)))^(3/2)]`


Differentiate the following w.r.t. x :

cos3[cos–1(x3)]


Differentiate the following w.r.t. x : `tan^-1[(1 + cos(x/3))/(sin(x/3))]`


Differentiate the following w.r.t. x : `sin^-1((4sinx + 5cosx)/sqrt(41))`


Differentiate the following w.r.t. x : `sin^-1((cossqrt(x) + sinsqrt(x))/sqrt(2))`


Differentiate the following w.r.t. x :

`cos^-1((1 - x^2)/(1 + x^2))`


Differentiate the following w.r.t. x : `sin^-1(2xsqrt(1 - x^2))`


Differentiate the following w.r.t. x : `cos^-1((e^x -  e^(-x))/(e^x +  e^(-x)))`


Differentiate the following w.r.t. x :

`cos^-1  ((1 - 9^x))/((1 + 9^x)`


Differentiate the following w.r.t. x : `cot^-1((4 - x - 2x^2)/(3x + 2))`


Differentiate the following w.r.t. x : `root(3)((4x - 1)/((2x + 3)(5 - 2x)^2)`


Differentiate the following w.r.t. x : `((x^2 + 2x + 2)^(3/2))/((sqrt(x) + 3)^3(cosx)^x`


Differentiate the following w.r.t. x : (sin xx)


Differentiate the following w.r.t. x:

`x^(x^x) + e^(x^x)`


Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `sec((x^5 + y^5)/(x^5 - y^5))` = a2 


Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `tan^-1((3x^2 - 4y^2)/(3x^2 + 4y^2))` = a2 


Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `sin((x^3 - y^3)/(x^3 + y^3))` = a3 


If y = sin−1 (2x), find `("d"y)/(""d"x)` 


Differentiate `sin^-1((2cosx + 3sinx)/sqrt(13))` w.r. to x


If y = `sqrt(cos x + sqrt(cos x + sqrt(cos x + ...... ∞)`, show that `("d"y)/("d"x) = (sin x)/(1 - 2y)`


If y = `sin^-1[("a"cosx - "b"sinx)/sqrt("a"^2 + "b"^2)]`, then find `("d"y)/("d"x)`


If x2 + y2 - 2axy = 0, then `dy/dx` equals ______ 


Let f(x) = `(1 - tan x)/(4x - pi), x ne pi/4, x ∈ [0, pi/2]`. If f(x) is continuous in `[0, pi/2]`, then f`(pi/4)` is ______.


If x = p sin θ, y = q cos θ, then `dy/dx` = ______ 


The value of `d/(dx)[tan^-1((a - x)/(1 + ax))]` is ______.


If `cos((x^2 - y^2)/(x^2 + y^2))` = log a, show that `dy/dx = y/x`


Diffierentiate: `tan^-1((a + b cos x)/(b - a cos x))` w.r.t.x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×