Advertisements
Advertisements
Question
Differentiate the following w.r.t. x :
`sin^(−1) ((1 − x^3)/(1 + x^3))`
Solution
Let `y = sin^(−1) ((1 − x^3)/(1 + x^3))`
`y = sin^(−1)[(1 − (x^(3/2))^2)/(1 + (x^(3/2))^2)]`
Put `x^(3/2) = tan θ. "Then" θ = tan^(−1)(x^(3/2))`
∴ y = `sin^(−1)((1 − tan^2θ)/(1 + tan^2θ))`
∴ y = sin−1(cos 2θ)
∴ y = `[sin(π/2 − 2θ)]`
∴ y = `π/(2) − 2θ`
∴ y = `π/(2) − 2tan^(−1)(x^(3/2))`
Differentiating w.r.t. x, we get
`dy/dx = d/dx [π/2 − 2tan^(−1) (x^(3/2))]`
`dy/dx = d/dx (π/2) − 2d/dx [tan^(−1) (x^(3/2))]`
`dy/dx = 0 − 2 × (1)/(1 + (x^(3/2))^2). d/dx (x^(3/2))`
`dy/dx = − (2)/(1 + x^3) × (3)/(2)x^(1/2)`
`dy/dx = −(3sqrt(x))/(1 + x^3)`
APPEARS IN
RELATED QUESTIONS
Differentiate the following w.r.t.x: `(8)/(3root(3)((2x^2 - 7x - 5)^11`
Differentiate the following w.r.t.x: cos(x2 + a2)
Differentiate the following w.r.t.x:
`sqrt(e^((3x + 2) + 5)`
Differentiate the following w.r.t.x: cot3[log(x3)]
Differentiate the following w.r.t.x: `"cosec"(sqrt(cos x))`
Differentiate the following w.r.t.x: cos2[log(x2 + 7)]
Differentiate the following w.r.t.x: sec[tan (x4 + 4)]
Differentiate the following w.r.t.x: [log {log(logx)}]2
Differentiate the following w.r.t.x:
(x2 + 4x + 1)3 + (x3− 5x − 2)4
Differentiate the following w.r.t.x: (1 + 4x)5 (3 + x −x2)8
Differentiate the following w.r.t.x:
`(x^3 - 5)^5/(x^3 + 3)^3`
Differentiate the following w.r.t.x: `log[4^(2x)((x^2 + 5)/(sqrt(2x^3 - 4)))^(3/2)]`
Differentiate the following w.r.t. x :
cos3[cos–1(x3)]
Differentiate the following w.r.t. x : `tan^-1[(1 + cos(x/3))/(sin(x/3))]`
Differentiate the following w.r.t. x : `sin^-1((4sinx + 5cosx)/sqrt(41))`
Differentiate the following w.r.t. x : `sin^-1((cossqrt(x) + sinsqrt(x))/sqrt(2))`
Differentiate the following w.r.t. x :
`cos^-1((1 - x^2)/(1 + x^2))`
Differentiate the following w.r.t. x : `sin^-1(2xsqrt(1 - x^2))`
Differentiate the following w.r.t. x : `cos^-1((e^x - e^(-x))/(e^x + e^(-x)))`
Differentiate the following w.r.t. x :
`cos^-1 ((1 - 9^x))/((1 + 9^x)`
Differentiate the following w.r.t. x : `cot^-1((4 - x - 2x^2)/(3x + 2))`
Differentiate the following w.r.t. x : `root(3)((4x - 1)/((2x + 3)(5 - 2x)^2)`
Differentiate the following w.r.t. x : `((x^2 + 2x + 2)^(3/2))/((sqrt(x) + 3)^3(cosx)^x`
Differentiate the following w.r.t. x : (sin xx)
Differentiate the following w.r.t. x:
`x^(x^x) + e^(x^x)`
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `sec((x^5 + y^5)/(x^5 - y^5))` = a2
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `tan^-1((3x^2 - 4y^2)/(3x^2 + 4y^2))` = a2
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `sin((x^3 - y^3)/(x^3 + y^3))` = a3
If y = sin−1 (2x), find `("d"y)/(""d"x)`
Differentiate `sin^-1((2cosx + 3sinx)/sqrt(13))` w.r. to x
If y = `sqrt(cos x + sqrt(cos x + sqrt(cos x + ...... ∞)`, show that `("d"y)/("d"x) = (sin x)/(1 - 2y)`
If y = `sin^-1[("a"cosx - "b"sinx)/sqrt("a"^2 + "b"^2)]`, then find `("d"y)/("d"x)`
If x2 + y2 - 2axy = 0, then `dy/dx` equals ______
Let f(x) = `(1 - tan x)/(4x - pi), x ne pi/4, x ∈ [0, pi/2]`. If f(x) is continuous in `[0, pi/2]`, then f`(pi/4)` is ______.
If x = p sin θ, y = q cos θ, then `dy/dx` = ______
The value of `d/(dx)[tan^-1((a - x)/(1 + ax))]` is ______.
If `cos((x^2 - y^2)/(x^2 + y^2))` = log a, show that `dy/dx = y/x`
Diffierentiate: `tan^-1((a + b cos x)/(b - a cos x))` w.r.t.x.