English

Show that dydxdydx=yx in the following, where a and p are constants : sin(x3-y3x3+y3) = a3 - Mathematics and Statistics

Advertisements
Advertisements

Question

Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `sin((x^3 - y^3)/(x^3 + y^3))` = a3 

Sum

Solution

`sin((x^3 - y^3)/(x^3 + y^3))` = a3 

`(x^3 - y^3)/(x^3 + y^3)` = sina3 = b

`(x^3 - y^3)/(x^3 + y^3)` = b

x3 – y3 = b(x3 + y3)
x3 – y3 = bx3 + by3
x3 – bx3 = by3 + y3
x3(1 – b) = y3(b + 1)
`y^3/x^3 = (1 - b)/(1 + b)` = e

`y^3/x^3` = c   .....(1)
y3 = cx3
Differentiating both sides w.r.t. x, we get
`3y^2"dy"/"dx"` = c.3x2

`(y^2dy)/(dx)` = cx2

`"dy"/"dx" c x^2/y^2`

`"dy"/"dx" = y^3/x^3. x^2/y^2` ....from(1)

`"dy"/"dx" = y/x`.

shaalaa.com
Differentiation
  Is there an error in this question or solution?
Chapter 1: Differentiation - Exercise 1.3 [Page 40]

RELATED QUESTIONS

Differentiate the following w.r.t.x:

`(2x^(3/2) - 3x^(4/3) - 5)^(5/2)`


Differentiate the following w.r.t.x:

`sqrt(x^2 + sqrt(x^2 + 1)`


Differentiate the following w.r.t.x: `log[tan(x/2)]`


Differentiate the following w.r.t.x: `"cosec"(sqrt(cos x))`


Differentiate the following w.r.t.x: sec[tan (x4 + 4)]


Differentiate the following w.r.t.x: `log_(e^2) (log x)`


Differentiate the following w.r.t.x: (1 + 4x)5 (3 + x −x2)


Differentiate the following w.r.t.x: `cot(logx/2) - log(cotx/2)`


Differentiate the following w.r.t.x: `(e^sqrt(x) + 1)/(e^sqrt(x) - 1)`


Differentiate the following w.r.t. x : tan–1(log x)


Differentiate the following w.r.t. x : `tan^-1(sqrt(x))`


Differentiate the following w.r.t. x : `"cosec"^-1[1/cos(5^x)]`


Differentiate the following w.r.t. x : `tan^-1[(1 - tan(x/2))/(1 + tan(x/2))]`


Differentiate the following w.r.t. x : `cot^-1((sin3x)/(1 + cos3x))`


Differentiate the following w.r.t. x : `tan^-1(sqrt((1 + cosx)/(1 - cosx)))`


Differentiate the following w.r.t. x :

`cos^-1[(3cos(e^x) + 2sin(e^x))/sqrt(13)]`


Differentiate the following w.r.t. x : `"cosec"^-1[(10)/(6sin(2^x) - 8cos(2^x))]`


Differentiate the following w.r.t. x :

`cos^-1  ((1 - 9^x))/((1 + 9^x)`


Differentiate the following w.r.t. x : `tan^-1((8x)/(1 - 15x^2))`


Differentiate the following w.r.t. x : `tan^-1((a + btanx)/(b - atanx))`


Differentiate the following w.r.t. x : `cot^-1((a^2 - 6x^2)/(5ax))`


Differentiate the following w.r.t. x :

`(x +  1)^2/((x + 2)^3(x + 3)^4`


Differentiate the following w.r.t. x: xe + xx + ex + ee 


Differentiate the following w.r.t. x : (logx)x – (cos x)cotx 


Differentiate the following w.r.t. x : `x^(e^x) + (logx)^(sinx)`


Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `tan^-1((3x^2 - 4y^2)/(3x^2 + 4y^2))` = a2 


Solve the following : 

The values of f(x), g(x), f'(x) and g'(x) are given in the following table :

x f(x) g(x) f'(x) fg'(x)
– 1 3 2 – 3 4
2 2 – 1 – 5 – 4

Match the following :

A Group – Function B Group – Derivative
(A)`"d"/"dx"[f(g(x))]"at" x = -1` 1.  – 16
(B)`"d"/"dx"[g(f(x) - 1)]"at" x = -1` 2.     20
(C)`"d"/"dx"[f(f(x) - 3)]"at" x = 2` 3.  – 20
(D)`"d"/"dx"[g(g(x))]"at"x = 2` 5.     12

If f(x) is odd and differentiable, then f′(x) is


Differentiate `cot^-1((cos x)/(1 + sinx))` w.r. to x


If y = `sin^-1[("a"cosx - "b"sinx)/sqrt("a"^2 + "b"^2)]`, then find `("d"y)/("d"x)`


If `t = v^2/3`, then `(-v/2 (df)/dt)` is equal to, (where f is acceleration) ______ 


y = {x(x - 3)}2 increases for all values of x lying in the interval.


A particle moves so that x = 2 + 27t - t3. The direction of motion reverses after moving a distance of ______ units.


If `cos((x^2 - y^2)/(x^2 + y^2))` = log a, show that `dy/dx = y/x`


If y = log (sec x + tan x), find `dy/dx`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×