English

Differentiate the following w.r.t.x: cot(logx2)-log(cotx2) - Mathematics and Statistics

Advertisements
Advertisements

Question

Differentiate the following w.r.t.x: `cot(logx/2) - log(cotx/2)`

Sum

Solution

Let y = `cot(logx/2) - log(cotx/2)`
Differentiating w.r.t. x, we get

`"dy"/"dx" = "d"/"dx"[cot(logx/2) - log(cotx/2)]`

= `"d"/"dx"[cot(logx/2)] - "d"/"dx"[log(cotx/2)]`

= `-"cosec"^2(logx/2)."d"/"dx"(logx/2) - (1)/((cotx/2))."d"/"dx"(cotx/2)`

= `-"cosec"^2(logx/2) xx 1/2 xx 1/x - 2/cotx xx 1/2 xx (-"cosec"^2x)`

= `-("cosec"^2(logx/2))/(2x) + tanx."cosec"^2x`.

shaalaa.com
Differentiation
  Is there an error in this question or solution?
Chapter 1: Differentiation - Exercise 1.1 [Page 12]

RELATED QUESTIONS

Differentiate the following w.r.t.x: cos(x2 + a2)


Differentiate the following w.r.t.x: `sqrt(tansqrt(x)`


Differentiate the following w.r.t.x: `5^(sin^3x + 3)`


Differentiate the following w.r.t.x: cos2[log(x2 + 7)]


Differentiate the following w.r.t.x: `log[sec (e^(x^2))]`


Differentiate the following w.r.t.x:

sin2x2 – cos2x2 


Differentiate the following w.r.t.x: `x/(sqrt(7 - 3x)`


Differentiate the following w.r.t.x:

log (sec 3x+ tan 3x)


Differentiate the following w.r.t.x: log[tan3x.sin4x.(x2 + 7)7]


Differentiate the following w.r.t.x: `log[4^(2x)((x^2 + 5)/(sqrt(2x^3 - 4)))^(3/2)]`


Differentiate the following w.r.t.x:

`(x^2 + 2)^4/(sqrt(x^2 + 5)`


Differentiate the following w.r.t. x : `tan^-1(sqrt(x))`


Differentiate the following w.r.t. x : `"cosec"^-1[1/cos(5^x)]`


Differentiate the following w.r.t. x : `cos^-1((sqrt(3)cosx - sinx)/(2))`


Differentiate the following w.r.t. x :

`cos^-1[(3cos(e^x) + 2sin(e^x))/sqrt(13)]`


Differentiate the following w.r.t. x : `"cosec"^-1[(10)/(6sin(2^x) - 8cos(2^x))]`


Differentiate the following w.r.t. x :

`cos^-1  ((1 - 9^x))/((1 + 9^x)`


Differentiate the following w.r.t. x :

`sin^-1(4^(x + 1/2)/(1 + 2^(4x)))`


Differentiate the following w.r.t. x : `tan^-1((2^x)/(1 + 2^(2x + 1)))`


Differentiate the following w.r.t. x :

`tan^-1((5 -x)/(6x^2 - 5x - 3))`


Differentiate the following w.r.t. x : (sin xx)


Differentiate the following w.r.t. x : (logx)x – (cos x)cotx 


Differentiate the following w.r.t. x : `[(tanx)^(tanx)]^(tanx) "at"  x = pi/(4)`


Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : x7.y5 = (x + y)12 


Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `tan^-1((3x^2 - 4y^2)/(3x^2 + 4y^2))` = a2 


Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `sin((x^3 - y^3)/(x^3 + y^3))` = a3 


Differentiate y = etanx w.r. to x


If y = `tan^-1[sqrt((1 + cos x)/(1 - cos x))]`, find `("d"y)/("d"x)`


Differentiate `tan^-1((8x)/(1 - 15x^2))` w.r. to x


If f(x) = 3x - 2 and g(x) = x2, then (fog)(x) = ________.


If the function f(x) = `(log (1 + "ax") - log (1 - "bx))/x, x ≠ 0` is continuous at x = 0 then, f(0) = _____.


If x = `sqrt("a"^(sin^-1 "t")), "y" = sqrt("a"^(cos^-1 "t")), "then" "dy"/"dx"` = ______


Derivative of (tanx)4 is ______ 


If y = `(3x^2 - 4x + 7.5)^4, "then"  dy/dx` is ______ 


The differential equation of the family of curves y = `"ae"^(2(x + "b"))` is ______.


If x = eθ, (sin θ – cos θ), y = eθ (sin θ + cos θ) then `dy/dx` at θ = `π/4` is ______.


If `cos((x^2 - y^2)/(x^2 + y^2))` = log a, show that `dy/dx = y/x`


If y = log (sec x + tan x), find `dy/dx`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×