Advertisements
Advertisements
Question
Differentiate the following w.r.t.x: (1 + 4x)5 (3 + x −x2)8
Solution
Let y = (1 + 4x)5 (3 + x −x2)8
Differentiating w.r.t. x, we get
`"dy"/"dx" = "d"/"dx"(1 + 4x)^5 (3 + x - x^2)^8`
= `(1 + 4x)^5."d"/"dx"(3 + x - x^2)^8 + (3 + x - x^2)^8."d"/"dx"(1 + 4x)^5`
= `(1 + 4x)^5 xx 8(3 + x - x^2)^7."d"/"dx"(3 + x - x^2) + (3 + x - x^2)^8 xx 5(1 + 4x)^4."d"/"dx"(1 + 4x)`
= 8(1 + 4x)5 (3 + x – x2)7. (0 + 1 – 2x) + 5(1 + 4x)4 (3 + x – x2)8. (0 + 4 x 1)
= 8(1 – 2x)(1 + 4x)5(3 + x – x2)7 + 20(1 + 4x)4(3 + x - x2)8.
APPEARS IN
RELATED QUESTIONS
Differentiate the following w.r.t.x:
`(2x^(3/2) - 3x^(4/3) - 5)^(5/2)`
Differentiate the following w.r.t.x: `sqrt(x^2 + 4x - 7)`
Differentiate the following w.r.t.x: `"cosec"(sqrt(cos x))`
Differentiate the following w.r.t.x: `sinsqrt(sinsqrt(x)`
Differentiate the following w.r.t.x:
(x2 + 4x + 1)3 + (x3− 5x − 2)4
Differentiate the following w.r.t.x:
y = (25)log5(secx) − (16)log4(tanx)
Differentiate the following w.r.t.x:
`(x^2 + 2)^4/(sqrt(x^2 + 5)`
Differentiate the following w.r.t. x : `sin^4[sin^-1(sqrt(x))]`
Differentiate the following w.r.t. x : `cos^-1(sqrt((1 + cosx)/2))`
Differentiate the following w.r.t. x : `tan^-1(sqrt((1 + cosx)/(1 - cosx)))`
Differentiate the following w.r.t.x:
tan–1 (cosec x + cot x)
Differentiate the following w.r.t. x :
`cot^-1[(sqrt(1 + sin ((4x)/3)) + sqrt(1 - sin ((4x)/3)))/(sqrt(1 + sin ((4x)/3)) - sqrt(1 - sin ((4x)/3)))]`
Differentiate the following w.r.t. x : `cos^-1((sqrt(3)cosx - sinx)/(2))`
Differentiate the following w.r.t. x : `sin^-1((cossqrt(x) + sinsqrt(x))/sqrt(2))`
Differentiate the following w.r.t. x :
`cos^-1[(3cos(e^x) + 2sin(e^x))/sqrt(13)]`
Differentiate the following w.r.t. x :
`cos^-1((1 - x^2)/(1 + x^2))`
Differentiate the following w.r.t. x : `sin^-1((1 - x^2)/(1 + x^2))`
Differentiate the following w.r.t. x :
`cos^-1 ((1 - 9^x))/((1 + 9^x)`
Differentiate the following w.r.t. x:
`tan^-1((2x^(5/2))/(1 - x^5))`
Differentiate the following w.r.t. x : `cot^-1((4 - x - 2x^2)/(3x + 2))`
Differentiate the following w.r.t. x : `(x^2 + 3)^(3/2).sin^3 2x.2^(x^2)`
Differentiate the following w.r.t. x: `x^(tan^(-1)x`
Differentiate the following w.r.t. x: xe + xx + ex + ee
Differentiate the following w.r.t. x : `10^(x^(x)) + x^(x(10)) + x^(10x)`
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `e^((x^7 - y^7)/(x^7 + y^7)` = a
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `sin((x^3 - y^3)/(x^3 + y^3))` = a3
Differentiate y = `sqrt(x^2 + 5)` w.r. to x
Differentiate y = etanx w.r. to x
If y = sin−1 (2x), find `("d"y)/(""d"x)`
Differentiate `sin^-1((2cosx + 3sinx)/sqrt(13))` w.r. to x
Differentiate `tan^-1((8x)/(1 - 15x^2))` w.r. to x
If y = `sin^-1[("a"cosx - "b"sinx)/sqrt("a"^2 + "b"^2)]`, then find `("d"y)/("d"x)`
If the function f(x) = `(log (1 + "ax") - log (1 - "bx))/x, x ≠ 0` is continuous at x = 0 then, f(0) = _____.
If y = `1 + x + x^2/(2!) + x^3/(3!) + x^4/(4!) + .....,` then `(d^2y)/(dx^2)` = ______
If x2 + y2 - 2axy = 0, then `dy/dx` equals ______
The volume of a spherical balloon is increasing at the rate of 10 cubic centimetre per minute. The rate of change of the surface of the balloon at the instant when its radius is 4 centimetres, is ______
Diffierentiate: `tan^-1((a + b cos x)/(b - a cos x))` w.r.t.x.