English

Differentiate the following w.r.t.x: sinsinx - Mathematics and Statistics

Advertisements
Advertisements

Question

Differentiate the following w.r.t.x: `sinsqrt(sinsqrt(x)`

Sum

Solution

Let y = `sinsqrt(sinsqrt(x)`
Differentiating w.r.t. x, we get
`"dy"/"dx" = "d"/"dx"(sinsqrt(sinsqrt(x)))`

= `cossqrt(sinsqrt(x))."d"/"dx"(sqrt(sinsqrt(x)))`

= `cossqrt(sinsqrt(x)) xx (1)/(2sqrt(sinsqrt(x)))."d"/"dx"(sinsqrt(x))`

= `(cossqrt(sinsqrt(x)))/(2sqrt(sinsqrt(x))) xx cossqrt(x)."d"/"dx"(sqrt(x))`

= `(cossqrt(sinsqrt(x)).cossqrt(x))/(2sqrt(sinsqrt(x))) xx (1)/(2sqrt(x)`

= `(cossqrt(sinsqrt(x)).cossqrt(x))/(4sqrt(x).sqrt(sinsqrt(x)))`.

shaalaa.com
Differentiation
  Is there an error in this question or solution?
Chapter 1: Differentiation - Exercise 1.1 [Page 12]

RELATED QUESTIONS

Differentiate the following w.r.t.x:

`sqrt(x^2 + sqrt(x^2 + 1)`


Differentiate the following w.r.t.x: `e^(3sin^2x - 2cos^2x)`


Differentiate the following w.r.t.x: sec[tan (x4 + 4)]


Differentiate the following w.r.t.x: (1 + sin2 x)2 (1 + cos2 x)3 


Differentiate the following w.r.t.x: `cot(logx/2) - log(cotx/2)`


Differentiate the following w.r.t.x: log[tan3x.sin4x.(x2 + 7)7]


Differentiate the following w.r.t.x:

`log(sqrt((1 - cos3x)/(1 + cos3x)))`


Differentiate the following w.r.t. x : tan–1(log x)


Differentiate the following w.r.t. x : cos–1(1 –x2)


Differentiate the following w.r.t. x : `tan^-1[(1 - tan(x/2))/(1 + tan(x/2))]`


Differentiate the following w.r.t. x : `cot^-1((sin3x)/(1 + cos3x))`


Differentiate the following w.r.t. x : `tan^-1(sqrt((1 + cosx)/(1 - cosx)))`


Differentiate the following w.r.t.x:

tan–1 (cosec x + cot x)


Differentiate the following w.r.t. x : `sin^-1((4sinx + 5cosx)/sqrt(41))`


Differentiate the following w.r.t. x : `"cosec"^-1[(10)/(6sin(2^x) - 8cos(2^x))]`


Differentiate the following w.r.t. x :

`cos^-1((1 - x^2)/(1 + x^2))`


Differentiate the following w.r.t. x : `tan^-1((2x)/(1 - x^2))`


Differentiate the following w.r.t. x :

`sin^-1(4^(x + 1/2)/(1 + 2^(4x)))`


Differentiate the following w.r.t. x :

`tan^-1((5 -x)/(6x^2 - 5x - 3))`


Differentiate the following w.r.t. x : `cot^-1((4 - x - 2x^2)/(3x + 2))`


Differentiate the following w.r.t. x : (sin x)x 


Differentiate the following w.r.t. x: xe + xx + ex + ee 


Differentiate the following w.r.t. x : `[(tanx)^(tanx)]^(tanx) "at"  x = pi/(4)`


Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `e^((x^7 - y^7)/(x^7 + y^7)` = a


If y is a function of x and log (x + y) = 2xy, then the value of y'(0) = ______.


Solve the following : 

The values of f(x), g(x), f'(x) and g'(x) are given in the following table :

x f(x) g(x) f'(x) fg'(x)
– 1 3 2 – 3 4
2 2 – 1 – 5 – 4

Match the following :

A Group – Function B Group – Derivative
(A)`"d"/"dx"[f(g(x))]"at" x = -1` 1.  – 16
(B)`"d"/"dx"[g(f(x) - 1)]"at" x = -1` 2.     20
(C)`"d"/"dx"[f(f(x) - 3)]"at" x = 2` 3.  – 20
(D)`"d"/"dx"[g(g(x))]"at"x = 2` 5.     12

If y = sin−1 (2x), find `("d"y)/(""d"x)` 


If f(x) is odd and differentiable, then f′(x) is


If y = `"e"^(1 + logx)` then find `("d"y)/("d"x)` 


Differentiate `tan^-1((8x)/(1 - 15x^2))` w.r. to x


If the function f(x) = `(log (1 + "ax") - log (1 - "bx))/x, x ≠ 0` is continuous at x = 0 then, f(0) = _____.


If x2 + y2 - 2axy = 0, then `dy/dx` equals ______ 


Let f(x) = `(1 - tan x)/(4x - pi), x ne pi/4, x ∈ [0, pi/2]`. If f(x) is continuous in `[0, pi/2]`, then f`(pi/4)` is ______.


If y = cosec x0, then `"dy"/"dx"` = ______.


Solve `x + y (dy)/(dx) = sec(x^2 + y^2)`


Diffierentiate: `tan^-1((a + b cos x)/(b - a cos x))` w.r.t.x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×