Advertisements
Advertisements
Question
Differentiate the following w.r.t. x : (sin x)x
Solution
Let y = (sin x)x
Then log y = log(sin x)x = x.log(sin x)
Differentiating both sides w.r.t. x, we get
`(1)/y."dy"/"dx" = "d"/"dx"[x.log(sinx)]`
= `x."d"/"dx"[log(sinx)] + log(sinx)."d"/"dx"(x)`
= `x xx (1)/sinx."d"/"dx"(sinx) + log(sinx) xx 1`
∴ `"dy"/"dx" = y[x xx 1/sinx. cosx + log(sinx)]`
= (sin x)x[x cotx + log (sinx)].
APPEARS IN
RELATED QUESTIONS
Differentiate the following w.r.t.x: cos(x2 + a2)
Differentiate the following w.r.t.x: `log[tan(x/2)]`
Differentiate the following w.r.t.x: `5^(sin^3x + 3)`
Differentiate the following w.r.t.x: sec[tan (x4 + 4)]
Differentiate the following w.r.t.x: `e^(log[(logx)^2 - logx^2]`
Differentiate the following w.r.t.x: `log[sec (e^(x^2))]`
Differentiate the following w.r.t.x:
(x2 + 4x + 1)3 + (x3− 5x − 2)4
Differentiate the following w.r.t.x: `cot(logx/2) - log(cotx/2)`
Differentiate the following w.r.t.x: `(e^sqrt(x) + 1)/(e^sqrt(x) - 1)`
Differentiate the following w.r.t. x : tan–1(log x)
Differentiate the following w.r.t. x : cot–1(x3)
Differentiate the following w.r.t. x : `sin^-1(x^(3/2))`
Differentiate the following w.r.t. x :
`cos^-1(sqrt(1 - cos(x^2))/2)`
Differentiate the following w.r.t. x : `tan^-1[(1 - tan(x/2))/(1 + tan(x/2))]`
Differentiate the following w.r.t. x : `tan^-1((cos7x)/(1 + sin7x))`
Differentiate the following w.r.t. x : `cos^-1((sqrt(3)cosx - sinx)/(2))`
Differentiate the following w.r.t. x : `sin^-1((cossqrt(x) + sinsqrt(x))/sqrt(2))`
Differentiate the following w.r.t. x : `sin^-1((1 - x^2)/(1 + x^2))`
Differentiate the following w.r.t. x : `sin^-1(2xsqrt(1 - x^2))`
Differentiate the following w.r.t. x : `tan^-1((8x)/(1 - 15x^2))`
Differentiate the following w.r.t. x :
`tan^(−1)[(2^(x + 2))/(1 − 3(4^x))]`
Differentiate the following w.r.t. x :
`(x + 1)^2/((x + 2)^3(x + 3)^4`
Differentiate the following w.r.t. x : `root(3)((4x - 1)/((2x + 3)(5 - 2x)^2)`
Differentiate the following w.r.t. x: `x^(tan^(-1)x`
Differentiate the following w.r.t. x : (logx)x – (cos x)cotx
Differentiate the following w.r.t. x : `x^(e^x) + (logx)^(sinx)`
Differentiate the following w.r.t. x :
etanx + (logx)tanx
Differentiate the following w.r.t. x : `[(tanx)^(tanx)]^(tanx) "at" x = pi/(4)`
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `tan^-1((3x^2 - 4y^2)/(3x^2 + 4y^2))` = a2
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants: `log((x^20 - y^20)/(x^20 + y^20))` = 20
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `sin((x^3 - y^3)/(x^3 + y^3))` = a3
Differentiate y = `sqrt(x^2 + 5)` w.r. to x
Differentiate `cot^-1((cos x)/(1 + sinx))` w.r. to x
If y = `1 + x + x^2/(2!) + x^3/(3!) + x^4/(4!) + .....,` then `(d^2y)/(dx^2)` = ______
The differential equation of the family of curves y = `"ae"^(2(x + "b"))` is ______.
If y = cosec x0, then `"dy"/"dx"` = ______.
If x = eθ, (sin θ – cos θ), y = eθ (sin θ + cos θ) then `dy/dx` at θ = `π/4` is ______.
Diffierentiate: `tan^-1((a + b cos x)/(b - a cos x))` w.r.t.x.