Advertisements
Advertisements
प्रश्न
Differentiate the following w.r.t.x:
`(x^3 - 5)^5/(x^3 + 3)^3`
उत्तर
Let y = `(x^3 - 5)^5/(x^3 + 3)^3`
Differentiating w.r.t.x, we get
`"dy"/"dx" = "d"/"dx"[(x^3 - 5)^5/(x^3 + 3)^3]`
`"dy"/"dx" = [(x^3 + 3)^3 × "d"/"dx"(x^3 - 5)^5 - (x^3 - 5)^5 "d"/"dx" (x^3 + 3)^3]/[(x^3 + 3)^3]^2`
`"dy"/"dx" = [(x^3 + 3)^3 × 5(x^3 - 5)^4 × "d"/"dx"(x^3 - 5) - (x^3 - 5)^5 × 3(x^3 + 3)^2 × "d"/"dx" (x^3 + 3)]/(x^3 + 3)^6`
`"dy"/"dx" = [(x^3 + 3)^3 × 5(x^3 - 5)^4 × (3x^2 - 0) - (x^3 - 5)^5 × 3(x^3 + 3)^2 × (3x^2 + 0)]/(x^3 + 3)^6`
`"dy"/"dx" = [3x^2(x^3 + 3)^2(x^3 - 5)^4[5(x^3 + 3) - 3(x^3 - 5)]]/(x^3 + 3)^6`
`"dy"/"dx" = [3x^2(x^3 + 3)^2(x^3 - 5)^4[5x^3 + 15 - 3x^3 + 15]]/(x^3 + 3)^6`
`"dy"/"dx" = [3x^2cancel((x^3 + 3)^2)(x^3 - 5)^4(2x^3 + 30)]/(x^3 + 3)^(cancel(6)4)`
`"dy"/"dx" = [3x^2(x^3 - 5)^4(2x^3 + 30)]/(x^3 + 3)^4`
`"dy"/"dx" = [3x^2(x^3 - 5)^4 . 2(x^3 + 15)]/(x^3 + 3)^4`
`"dy"/"dx" = [6x^2(x^3 + 15)(x^3 - 5)^4]/(x^3 + 3)^4`
APPEARS IN
संबंधित प्रश्न
Differentiate the following w.r.t.x: `log[tan(x/2)]`
Differentiate the following w.r.t.x: log[cos(x3 – 5)]
Differentiate the following w.r.t.x:
tan[cos(sinx)]
Differentiate the following w.r.t.x: `log_(e^2) (log x)`
Differentiate the following w.r.t.x:
(x2 + 4x + 1)3 + (x3− 5x − 2)4
Differentiate the following w.r.t.x:
`(x^2 + 2)^4/(sqrt(x^2 + 5)`
Differentiate the following w.r.t. x : cosec–1 (e–x)
Differentiate the following w.r.t. x : cot–1(4x)
Differentiate the following w.r.t. x : `tan^-1(sqrt(x))`
Differentiate the following w.r.t. x : `sin^-1(x^(3/2))`
Differentiate the following w.r.t. x :
cos3[cos–1(x3)]
Differentiate the following w.r.t. x : `tan^-1[(1 - tan(x/2))/(1 + tan(x/2))]`
Differentiate the following w.r.t. x : `"cosec"^-1((1)/(4cos^3 2x - 3cos2x))`
Differentiate the following w.r.t. x : `cot^-1((sin3x)/(1 + cos3x))`
Differentiate the following w.r.t. x :
`cos^-1 ((1 - 9^x))/((1 + 9^x)`
Differentiate the following w.r.t. x : `sin^-1 ((1 - 25x^2)/(1 + 25x^2))`
Differentiate the following w.r.t. x : `tan^-1((8x)/(1 - 15x^2))`
Differentiate the following w.r.t. x :
`tan^(−1)[(2^(x + 2))/(1 − 3(4^x))]`
Differentiate the following w.r.t. x : `tan^-1((a + btanx)/(b - atanx))`
Differentiate the following w.r.t. x : `cot^-1((a^2 - 6x^2)/(5ax))`
Differentiate the following w.r.t. x : `(x^2 + 3)^(3/2).sin^3 2x.2^(x^2)`
Differentiate the following w.r.t. x: `x^(tan^(-1)x`
Differentiate the following w.r.t. x : (sin x)x
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `sec((x^5 + y^5)/(x^5 - y^5))` = a2
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `sin((x^3 - y^3)/(x^3 + y^3))` = a3
Solve the following :
The values of f(x), g(x), f'(x) and g'(x) are given in the following table :
x | f(x) | g(x) | f'(x) | fg'(x) |
– 1 | 3 | 2 | – 3 | 4 |
2 | 2 | – 1 | – 5 | – 4 |
Match the following :
A Group – Function | B Group – Derivative |
(A)`"d"/"dx"[f(g(x))]"at" x = -1` | 1. – 16 |
(B)`"d"/"dx"[g(f(x) - 1)]"at" x = -1` | 2. 20 |
(C)`"d"/"dx"[f(f(x) - 3)]"at" x = 2` | 3. – 20 |
(D)`"d"/"dx"[g(g(x))]"at"x = 2` | 5. 12 |
Differentiate y = `sqrt(x^2 + 5)` w.r. to x
If y = `sin^-1[("a"cosx - "b"sinx)/sqrt("a"^2 + "b"^2)]`, then find `("d"y)/("d"x)`
y = {x(x - 3)}2 increases for all values of x lying in the interval.
If y = cosec x0, then `"dy"/"dx"` = ______.
If x = p sin θ, y = q cos θ, then `dy/dx` = ______
Find `(dy)/(dx)`, if x3 + x3y + xy2 + y3 = 81
If x = eθ, (sin θ – cos θ), y = eθ (sin θ + cos θ) then `dy/dx` at θ = `π/4` is ______.
Let f(x) be a polynomial function of the second degree. If f(1) = f(–1) and a1, a2, a3 are in AP, then f’(a1), f’(a2), f’(a3) are in ______.