Advertisements
Advertisements
प्रश्न
Differentiate the following w.r.t. x : `tan^-1((8x)/(1 - 15x^2))`
उत्तर
Let y = `tan^-1((8x)/(1 - 15x^2))`
= `tan^-1[(5x + 3x)/(1 - (5x)(3x))]`
= tan–1(5x) + tan–1(3x)
Differentiating w.r.t. x, we get
`"dy"/"dx" = "d"/"dx"[tan^-1(5x) + tan^-1(3x)]`
= `"d"/"dx"[tan^-1(5x)] + "d"/"dx"[tan^-1(3x)]`
= `(1)/(1 + (5x)^2)."d"/"dx"(5x) + (1)/(1 + (3x)^2)."d"/"dx"(3x)`
= `(1)/(1 + 25x^2) xx 5 + (1)/(1 + 9x^2) xx 3`
= `(5)/(1 + 25x^2) + (3)/(1 + 9x^2)`.
APPEARS IN
संबंधित प्रश्न
Differentiate the following w.r.t.x: `sqrt(x^2 + 4x - 7)`
Differentiate the following w.r.t.x: cos(x2 + a2)
Differentiate the following w.r.t.x:
`sqrt(e^((3x + 2) + 5)`
Differentiate the following w.r.t.x: cot3[log(x3)]
Differentiate the following w.r.t.x: `5^(sin^3x + 3)`
Differentiate the following w.r.t.x: `"cosec"(sqrt(cos x))`
Differentiate the following w.r.t.x: `e^(3sin^2x - 2cos^2x)`
Differentiate the following w.r.t.x: `log_(e^2) (log x)`
Differentiate the following w.r.t.x: [log {log(logx)}]2
Differentiate the following w.r.t.x: (1 + sin2 x)2 (1 + cos2 x)3
Differentiate the following w.r.t.x: `(1 + sinx°)/(1 - sinx°)`
Differentiate the following w.r.t.x:
`log[a^(cosx)/((x^2 - 3)^3 logx)]`
Differentiate the following w.r.t. x : `sin^-1(x^(3/2))`
Differentiate the following w.r.t. x :
cos3[cos–1(x3)]
Differentiate the following w.r.t. x : `sin^-1((4sinx + 5cosx)/sqrt(41))`
Differentiate the following w.r.t. x : cos–1(3x – 4x3)
Differentiate the following w.r.t. x : `sin^-1 ((1 - 25x^2)/(1 + 25x^2))`
Differentiate the following w.r.t. x :
`(x + 1)^2/((x + 2)^3(x + 3)^4`
Differentiate the following w.r.t. x : (sin x)x
Differentiate the following w.r.t. x: xe + xx + ex + ee
Differentiate the following w.r.t. x:
`x^(x^x) + e^(x^x)`
Differentiate the following w.r.t. x :
(sin x)tanx + (cos x)cotx
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `sec((x^5 + y^5)/(x^5 - y^5))` = a2
Solve the following :
The values of f(x), g(x), f'(x) and g'(x) are given in the following table :
x | f(x) | g(x) | f'(x) | fg'(x) |
– 1 | 3 | 2 | – 3 | 4 |
2 | 2 | – 1 | – 5 | – 4 |
Match the following :
A Group – Function | B Group – Derivative |
(A)`"d"/"dx"[f(g(x))]"at" x = -1` | 1. – 16 |
(B)`"d"/"dx"[g(f(x) - 1)]"at" x = -1` | 2. 20 |
(C)`"d"/"dx"[f(f(x) - 3)]"at" x = 2` | 3. – 20 |
(D)`"d"/"dx"[g(g(x))]"at"x = 2` | 5. 12 |
Differentiate y = `sqrt(x^2 + 5)` w.r. to x
If y = `"e"^(1 + logx)` then find `("d"y)/("d"x)`
Differentiate `sin^-1((2cosx + 3sinx)/sqrt(13))` w.r. to x
If y = `sin^-1[("a"cosx - "b"sinx)/sqrt("a"^2 + "b"^2)]`, then find `("d"y)/("d"x)`
If f(x) = 3x - 2 and g(x) = x2, then (fog)(x) = ________.
A particle moves so that x = 2 + 27t - t3. The direction of motion reverses after moving a distance of ______ units.
The weight W of a certain stock of fish is given by W = nw, where n is the size of stock and w is the average weight of a fish. If n and w change with time t as n = 2t2 + 3 and w = t2 - t + 2, then the rate of change of W with respect to t at t = 1 is ______
If f(x) = `(3x + 1)/(5x - 4)` and t = `(5 + 3x)/(x - 4)`, then f(t) is ______
If y = cosec x0, then `"dy"/"dx"` = ______.
Find `(dy)/(dx)`, if x3 + x3y + xy2 + y3 = 81
The value of `d/(dx)[tan^-1((a - x)/(1 + ax))]` is ______.
If y = log (sec x + tan x), find `dy/dx`.