Advertisements
Advertisements
प्रश्न
Differentiate the following w.r.t.x: `(1 + sinx°)/(1 - sinx°)`
उत्तर
Let y = `(1 + sinx°)/(1 − sinx°)`
y = `(1 + sin((πx)/180))/(1 − sin((πx)/180)) ...[∵ x° = ((pix)/180)^°]`
Differentiating w.r.t. x, we get,
`dy/dx = d/dx [(1 + sin((πx)/180))/(1 − sin((πx)/180))]`
`dy/dx = ([1 − sin((πx)/180)]. d/dx [1 + sin((πx)/180)] − [1 + sin((πx)/180)]. d/dx [1 − sin((πx)/180)])/[1 − sin((πx)/180)]^2`
`dy/dx = ([1 − sin((πx)/(180))].[0 + cos((πx)/(180)). d/dx ((πx)/(180)) - [1 + sin((πx)/(180))].[0 − cos((πx)/(180)). d/dx ((πx)/(180))]))/[1 − sin((πx)/180)]^2`
`dy/dx = ((1 − sinx°)[(cosx°) × π/(180) × 1] - (1 + sinx°)[(− cosx°) × π/(180) × 1])/(1 − sinx°)^2`
`dy/dx = (π/(180)cosx°(1 − sinx° + 1 + sinx°))/(1 - sinx°)^2`
`dy/dx = (πcosx°)/(90(1 − sinx°)^2`.
APPEARS IN
संबंधित प्रश्न
Differentiate the following w.r.t.x:
`(sqrt(3x - 5) - 1/sqrt(3x - 5))^5`
Differentiate the following w.r.t.x: `log[tan(x/2)]`
Differentiate the following w.r.t.x: `sqrt(tansqrt(x)`
Differentiate the following w.r.t.x: cot3[log(x3)]
Differentiate the following w.r.t.x: `"cosec"(sqrt(cos x))`
Differentiate the following w.r.t.x:
sin2x2 – cos2x2
Differentiate the following w.r.t.x:
(x2 + 4x + 1)3 + (x3− 5x − 2)4
Differentiate the following w.r.t.x:
`(x^3 - 5)^5/(x^3 + 3)^3`
Differentiate the following w.r.t.x:
log (sec 3x+ tan 3x)
Differentiate the following w.r.t.x: log[tan3x.sin4x.(x2 + 7)7]
Differentiate the following w.r.t.x: `log[(ex^2(5 - 4x)^(3/2))/root(3)(7 - 6x)]`
Differentiate the following w.r.t.x:
`(x^2 + 2)^4/(sqrt(x^2 + 5)`
Differentiate the following w.r.t. x :
`cos^-1(sqrt(1 - cos(x^2))/2)`
Differentiate the following w.r.t. x : `tan^-1[(1 + cos(x/3))/(sin(x/3))]`
Differentiate the following w.r.t. x : `tan^-1((cos7x)/(1 + sin7x))`
Differentiate the following w.r.t. x : `sin^-1((cossqrt(x) + sinsqrt(x))/sqrt(2))`
Differentiate the following w.r.t. x :
`cos^-1((1 - x^2)/(1 + x^2))`
Differentiate the following w.r.t. x : `sin^-1(2xsqrt(1 - x^2))`
Differentiate the following w.r.t. x : `cos^-1((e^x - e^(-x))/(e^x + e^(-x)))`
Differentiate the following w.r.t. x :
`cos^-1 ((1 - 9^x))/((1 + 9^x)`
Differentiate the following w.r.t. x : `cot^-1((1 - sqrt(x))/(1 + sqrt(x)))`
Differentiate the following w.r.t. x : `(x^5.tan^3 4x)/(sin^2 3x)`
Differentiate the following w.r.t. x : (logx)x – (cos x)cotx
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants: `log((x^20 - y^20)/(x^20 + y^20))` = 20
If y is a function of x and log (x + y) = 2xy, then the value of y'(0) = ______.
If y = `"e"^(1 + logx)` then find `("d"y)/("d"x)`
Differentiate `cot^-1((cos x)/(1 + sinx))` w.r. to x
Differentiate `sin^-1((2cosx + 3sinx)/sqrt(13))` w.r. to x
If f(x) = 3x - 2 and g(x) = x2, then (fog)(x) = ________.
If `t = v^2/3`, then `(-v/2 (df)/dt)` is equal to, (where f is acceleration) ______
The weight W of a certain stock of fish is given by W = nw, where n is the size of stock and w is the average weight of a fish. If n and w change with time t as n = 2t2 + 3 and w = t2 - t + 2, then the rate of change of W with respect to t at t = 1 is ______
If f(x) = `(3x + 1)/(5x - 4)` and t = `(5 + 3x)/(x - 4)`, then f(t) is ______
If y = cosec x0, then `"dy"/"dx"` = ______.
The volume of a spherical balloon is increasing at the rate of 10 cubic centimetre per minute. The rate of change of the surface of the balloon at the instant when its radius is 4 centimetres, is ______
If x = eθ, (sin θ – cos θ), y = eθ (sin θ + cos θ) then `dy/dx` at θ = `π/4` is ______.
Let f(x) be a polynomial function of the second degree. If f(1) = f(–1) and a1, a2, a3 are in AP, then f’(a1), f’(a2), f’(a3) are in ______.
If `cos((x^2 - y^2)/(x^2 + y^2))` = log a, show that `dy/dx = y/x`
If y = log (sec x + tan x), find `dy/dx`.