Advertisements
Advertisements
प्रश्न
Differentiate the following w.r.t. x : `(x^5.tan^3 4x)/(sin^2 3x)`
उत्तर
Let y = `(x^5.tan^3 4x)/(sin^2 3x)`
Then log y = `log[(x^5.tan^3 4x)/(sin^23x)]`
= logx5 + log tan34x – log sin23x
= 5logx + 3log (tan4x) – 2log (sin3x)
Differentiating both sides w.r.t. x, we get
`(1)/y."dy"/"dx" = 5"d"/"dx"(logx) + 3"d"/"dx"[log(tan4x)] - 2"d"/"dx"[log(sin3x)]`
= `5 xx (1)/x + 3 xx (1)/(tan4x)."d"/"dx"(tan4x) - 2 xx (1)/(sin3x)."d"/"dx"(sin3x)`
= `5/x + 3 xx (1)/(tan4x) xx sec^2 4x."d"/"dx"(4x) - 2 xx (1)/(sin3x) xx cos3x."d"/"dx"(3x)`
= `5/x + 3.(cos4x)/(sin4x) xx (1)/(cos^2 4x) xx 4 - 2cot3x xx 3`
= `5/x + (24)/(2sin4x.cos4x) - 6cot3x`
∴ `"dy"/"dx" = y[5/x + 24/(sin8x) - 6cot3x]`
= `(x^5.tan^3 4x)/(sin^2 3x)[5/x + 24"cosec"8x - 6cot3x]`.
APPEARS IN
संबंधित प्रश्न
Differentiate the following w.r.t.x: sec[tan (x4 + 4)]
Differentiate the following w.r.t.x: `log[sec (e^(x^2))]`
Differentiate the following w.r.t.x: `x/(sqrt(7 - 3x)`
Differentiate the following w.r.t.x: log[tan3x.sin4x.(x2 + 7)7]
Differentiate the following w.r.t. x : cos–1(1 –x2)
Differentiate the following w.r.t. x : `sin^-1(x^(3/2))`
Differentiate the following w.r.t. x : `cos^-1(sqrt((1 + cosx)/2))`
Differentiate the following w.r.t. x : `tan^-1[(1 + cos(x/3))/(sin(x/3))]`
Differentiate the following w.r.t. x : `tan^-1(sqrt((1 + cosx)/(1 - cosx)))`
Differentiate the following w.r.t.x:
tan–1 (cosec x + cot x)
Differentiate the following w.r.t. x :
`cos^-1[(3cos(e^x) + 2sin(e^x))/sqrt(13)]`
Differentiate the following w.r.t. x : `"cosec"^-1[(10)/(6sin(2^x) - 8cos(2^x))]`
Differentiate the following w.r.t. x : `tan^-1((2x)/(1 - x^2))`
Differentiate the following w.r.t. x : `sin^-1((1 - x^2)/(1 + x^2))`
Differentiate the following w.r.t. x : cos–1(3x – 4x3)
Differentiate the following w.r.t. x : `cos^-1((e^x - e^(-x))/(e^x + e^(-x)))`
Differentiate the following w.r.t. x :
`sin^-1(4^(x + 1/2)/(1 + 2^(4x)))`
Differentiate the following w.r.t. x : `sin^-1 ((1 - 25x^2)/(1 + 25x^2))`
Differentiate the following w.r.t. x:
`tan^-1((2x^(5/2))/(1 - x^5))`
Differentiate the following w.r.t. x : `tan^-1((2^x)/(1 + 2^(2x + 1)))`
Differentiate the following w.r.t. x : `tan^-1((a + btanx)/(b - atanx))`
Differentiate the following w.r.t. x :
`tan^-1((5 -x)/(6x^2 - 5x - 3))`
Differentiate the following w.r.t. x : `cot^-1((4 - x - 2x^2)/(3x + 2))`
Differentiate the following w.r.t. x : `(x^2 + 3)^(3/2).sin^3 2x.2^(x^2)`
Differentiate the following w.r.t. x : (sin x)x
Differentiate the following w.r.t. x :
etanx + (logx)tanx
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : x7.y5 = (x + y)12
Solve the following :
The values of f(x), g(x), f'(x) and g'(x) are given in the following table :
x | f(x) | g(x) | f'(x) | fg'(x) |
– 1 | 3 | 2 | – 3 | 4 |
2 | 2 | – 1 | – 5 | – 4 |
Match the following :
A Group – Function | B Group – Derivative |
(A)`"d"/"dx"[f(g(x))]"at" x = -1` | 1. – 16 |
(B)`"d"/"dx"[g(f(x) - 1)]"at" x = -1` | 2. 20 |
(C)`"d"/"dx"[f(f(x) - 3)]"at" x = 2` | 3. – 20 |
(D)`"d"/"dx"[g(g(x))]"at"x = 2` | 5. 12 |
Differentiate y = etanx w.r. to x
If y = `"e"^(1 + logx)` then find `("d"y)/("d"x)`
Differentiate `sin^-1((2cosx + 3sinx)/sqrt(13))` w.r. to x
A particle moves so that x = 2 + 27t - t3. The direction of motion reverses after moving a distance of ______ units.
The differential equation of the family of curves y = `"ae"^(2(x + "b"))` is ______.
Let f(x) = `(1 - tan x)/(4x - pi), x ne pi/4, x ∈ [0, pi/2]`. If f(x) is continuous in `[0, pi/2]`, then f`(pi/4)` is ______.
Find `(dy)/(dx)`, if x3 + x3y + xy2 + y3 = 81