Advertisements
Advertisements
प्रश्न
Differentiate the following w.r.t. x : `(x^2 + 3)^(3/2).sin^3 2x.2^(x^2)`
उत्तर
Let y = `(x^2 + 3)^(3/2).sin^3 2x.2^(x^2)`
Then log y = `log[x^2 + 3)^(3/2).sin^3 2x.2^(x^2)`
= `log(x^2 + 3)^(3/2) + logsin^3 2x + log2^(x^2)`
= `(3)/(2)log(x^2 + 3) + 3log(sin2x) + x^2.log2`
Differentiating both sides w.r.t. x, we get
`(1)/y."dy"/"dx" = (3)/(2)"d"/"dx"[log(x^2 + 3)] + 3"d"/"dx"[log(sin2x)] + log2."d"/"dx"(x^2)`
= `(3)/(2) xx (1)/(x^2 + 3)."d"/"dx"(x^2 + 3) + 3 xx (1)/(sin2x)."d"/"dx"(sin2x) + log2 xx 2x`
= `(3)/(2(x^2 + 3)).(2x + 0) + (3)/(sin2x) xx cos2x."d"/"dx"(2x) + 2xlog2`
= `(6x)/(2(x^2 + 3)) + 3cot2x xx 2 + 2xlog2`
∴ `"dy"/"dx" = y[(3x)/(x^2 + 3) + 6cot2x + 2xlog2]`
= `(x^2 + 3)^(3/2).sin^3 2x.2^(x^2)[(3x)/(x^2 + 3) + 6cot2x + 2xlog2]`.
APPEARS IN
संबंधित प्रश्न
Differentiate the following w.r.t.x: `(8)/(3root(3)((2x^2 - 7x - 5)^11`
Differentiate the following w.r.t.x:
`(sqrt(3x - 5) - 1/sqrt(3x - 5))^5`
Differentiate the following w.r.t.x:
`sqrt(e^((3x + 2) + 5)`
Differentiate the following w.r.t.x: `sqrt(tansqrt(x)`
Differentiate the following w.r.t.x:
tan[cos(sinx)]
Differentiate the following w.r.t.x: sec[tan (x4 + 4)]
Differentiate the following w.r.t.x: `log[sec (e^(x^2))]`
Differentiate the following w.r.t.x: (1 + 4x)5 (3 + x −x2)8
Differentiate the following w.r.t.x:
`(x^3 - 5)^5/(x^3 + 3)^3`
Differentiate the following w.r.t.x:
`sqrt(cosx) + sqrt(cossqrt(x)`
Differentiate the following w.r.t.x:
`log(sqrt((1 - cos3x)/(1 + cos3x)))`
Differentiate the following w.r.t.x:
`log(sqrt((1 + cos((5x)/2))/(1 - cos((5x)/2))))`
Differentiate the following w.r.t.x:
`log[a^(cosx)/((x^2 - 3)^3 logx)]`
Differentiate the following w.r.t.x:
`(x^2 + 2)^4/(sqrt(x^2 + 5)`
Differentiate the following w.r.t. x : cos–1(1 –x2)
Differentiate the following w.r.t. x : `sin^-1(x^(3/2))`
Differentiate the following w.r.t. x : `cot^-1[cot(e^(x^2))]`
Differentiate the following w.r.t. x : `sin^-1((4sinx + 5cosx)/sqrt(41))`
Differentiate the following w.r.t. x : `sin^-1(2xsqrt(1 - x^2))`
Differentiate the following w.r.t. x : cos–1(3x – 4x3)
Differentiate the following w.r.t. x:
`tan^-1((2x^(5/2))/(1 - x^5))`
Differentiate the following w.r.t. x : `tan^-1((8x)/(1 - 15x^2))`
Differentiate the following w.r.t. x : `cot^-1((4 - x - 2x^2)/(3x + 2))`
Differentiate the following w.r.t. x :
`(x + 1)^2/((x + 2)^3(x + 3)^4`
Differentiate the following w.r.t. x : (sin xx)
Differentiate the following w.r.t. x : `10^(x^(x)) + x^(x(10)) + x^(10x)`
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : x7.y5 = (x + y)12
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `tan^-1((3x^2 - 4y^2)/(3x^2 + 4y^2))` = a2
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `e^((x^7 - y^7)/(x^7 + y^7)` = a
If y is a function of x and log (x + y) = 2xy, then the value of y'(0) = ______.
Differentiate y = etanx w.r. to x
Differentiate sin2 (sin−1(x2)) w.r. to x
Differentiate `cot^-1((cos x)/(1 + sinx))` w.r. to x
Differentiate `tan^-1((8x)/(1 - 15x^2))` w.r. to x
If `t = v^2/3`, then `(-v/2 (df)/dt)` is equal to, (where f is acceleration) ______
If y = `1 + x + x^2/(2!) + x^3/(3!) + x^4/(4!) + .....,` then `(d^2y)/(dx^2)` = ______
If y = cosec x0, then `"dy"/"dx"` = ______.
The value of `d/(dx)[tan^-1((a - x)/(1 + ax))]` is ______.