Advertisements
Advertisements
प्रश्न
Differentiate the following w.r.t. x : `10^(x^(x)) + x^(x(10)) + x^(10x)`
उत्तर
Let y = `10^(x^(x)) + x^(x(10)) + x^(10x)`
Put u = `10^(x^(x)), v = x^(x^(10)) and omega = x^(10^(x)`
Then y = u + v + ω
∴ `"dy"/"dx" = "u"/"dx" + "dv"/"dx" + "dω"/"dx"` ...(1)
Take, u = `10^(x^(x)`
∴ `"du"/"dx" = "d"/"dx"(10^(x^(x)`
= `10^(x^(x)).log10."d"/"dx"(x^x)`
To find `"d"/"dx"(x^x)`
Let z = xx
∴ logz = logxx = xlogx
Differentiating both sides w.r.t. x, we get
`1/z."dz"/"dx" = "d"/"dx"(xlogx)`
= `x."d"/"dx"(logx) + (logx)."d"/"dx"(x)`
= `x xx 1/x + (logx)(1)`
∴ `"dz"/"dx" = z(1 + logx)`
∴ `"d"/"dx"(x^x) = x^x(1 + logx)`
∴ `"du"/"dx" = 10^(x^x).log10.x^x(1 + logx)` ...(2)
Take, v = `x^(x^10)`
∴ log v = `logx^(x^10) = x^10.logx`
Differentiating both sides w.r.t. x, we get
`1/v."dv"/"dx" = "d"/"dx"(x^10logx)`
= `x^10."d"/"dx"(logx) + (logx)."d"/"dx"(x^10)`
= `x^10 xx 1/x + (logx)(10x^9)`
∴ `"dv"/"dx" = v[x^9 + 10x^9logx]`
∴ `"dv"/"dx" = x^(x^10).x^9(1 + 10logx)` ...(3)
Also, ω = `x^(10x)`
∴ log ω = `logx^(10x) = 10^x.logx`
Differentiating both sides w.r.t. x, we get
`1/omega ."dω"/"dx" = "d"/"dx"(10^x.logx)`
= `10^x."d"/"dx"(logx) + (logx)."d"/"dx"(10^x)`
= `10^x xx 1/x + (logx)(10^x.log10)`
∴ `"dω"/"dx" = ω[10^x/x + 10^x.(logx)(log10)]`
∴ `"dω"/"dx" = x^(10x).10^x[1/x + (logx)(log10)]` ...(4)
From (1),(2),(3) and (4), we get
`"dy"/"dx" = 10^(x*x).log10.x^x(1 + logx) + x^(x^10).x^9(1 + 10logx) + x^(10x).10^x[1/x + (logx)(log10)]`.
APPEARS IN
संबंधित प्रश्न
Differentiate the following w.r.t.x:
(x3 – 2x – 1)5
Differentiate the following w.r.t.x:
`sqrt(x^2 + sqrt(x^2 + 1)`
Differentiate the following w.r.t.x:
`sqrt(e^((3x + 2) + 5)`
Differentiate the following w.r.t.x: `log[tan(x/2)]`
Differentiate the following w.r.t.x: cot3[log(x3)]
Differentiate the following w.r.t.x: `"cosec"(sqrt(cos x))`
Differentiate the following w.r.t.x: log[cos(x3 – 5)]
Differentiate the following w.r.t.x: `e^(log[(logx)^2 - logx^2]`
Differentiate the following w.r.t.x: `sinsqrt(sinsqrt(x)`
Differentiate the following w.r.t.x: `log[sec (e^(x^2))]`
Differentiate the following w.r.t.x: `x/(sqrt(7 - 3x)`
Differentiate the following w.r.t.x: log[tan3x.sin4x.(x2 + 7)7]
Differentiate the following w.r.t.x:
`log(sqrt((1 + cos((5x)/2))/(1 - cos((5x)/2))))`
Differentiate the following w.r.t.x: `log(sqrt((1 - sinx)/(1 + sinx)))`
Differentiate the following w.r.t.x: `log[4^(2x)((x^2 + 5)/(sqrt(2x^3 - 4)))^(3/2)]`
Differentiate the following w.r.t.x:
y = (25)log5(secx) − (16)log4(tanx)
Differentiate the following w.r.t. x : cosec–1 (e–x)
Differentiate the following w.r.t. x : cot–1(x3)
Differentiate the following w.r.t. x : `sin^-1(x^(3/2))`
Differentiate the following w.r.t. x : `sin^4[sin^-1(sqrt(x))]`
Differentiate the following w.r.t. x : `tan^-1[(1 - tan(x/2))/(1 + tan(x/2))]`
Differentiate the following w.r.t. x : `cot^-1((sin3x)/(1 + cos3x))`
Differentiate the following w.r.t. x : cos–1(3x – 4x3)
Differentiate the following w.r.t. x : `cos^-1((e^x - e^(-x))/(e^x + e^(-x)))`
Differentiate the following w.r.t. x :
`sin^(−1) ((1 − x^3)/(1 + x^3))`
Differentiate the following w.r.t. x :
`tan^-1((5 -x)/(6x^2 - 5x - 3))`
Differentiate the following w.r.t. x:
`x^(x^x) + e^(x^x)`
Differentiate the following w.r.t. x : (logx)x – (cos x)cotx
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `tan^-1((3x^2 - 4y^2)/(3x^2 + 4y^2))` = a2
Differentiate y = `sqrt(x^2 + 5)` w.r. to x
Differentiate `cot^-1((cos x)/(1 + sinx))` w.r. to x
If y = `sqrt(cos x + sqrt(cos x + sqrt(cos x + ...... ∞)`, show that `("d"y)/("d"x) = (sin x)/(1 - 2y)`
If x = `sqrt("a"^(sin^-1 "t")), "y" = sqrt("a"^(cos^-1 "t")), "then" "dy"/"dx"` = ______
The differential equation of the family of curves y = `"ae"^(2(x + "b"))` is ______.
Find `(dy)/(dx)`, if x3 + x3y + xy2 + y3 = 81
If x = eθ, (sin θ – cos θ), y = eθ (sin θ + cos θ) then `dy/dx` at θ = `π/4` is ______.
Diffierentiate: `tan^-1((a + b cos x)/(b - a cos x))` w.r.t.x.