Advertisements
Advertisements
प्रश्न
Differentiate the following w.r.t. x : `10^(x^(x)) + x^(x(10)) + x^(10x)`
उत्तर
Let y = `10^(x^(x)) + x^(x(10)) + x^(10x)`
Put u = `10^(x^(x)), v = x^(x^(10)) and omega = x^(10^(x)`
Then y = u + v + ω
∴ `"dy"/"dx" = "u"/"dx" + "dv"/"dx" + "dω"/"dx"` ...(1)
Take, u = `10^(x^(x)`
∴ `"du"/"dx" = "d"/"dx"(10^(x^(x)`
= `10^(x^(x)).log10."d"/"dx"(x^x)`
To find `"d"/"dx"(x^x)`
Let z = xx
∴ logz = logxx = xlogx
Differentiating both sides w.r.t. x, we get
`1/z."dz"/"dx" = "d"/"dx"(xlogx)`
= `x."d"/"dx"(logx) + (logx)."d"/"dx"(x)`
= `x xx 1/x + (logx)(1)`
∴ `"dz"/"dx" = z(1 + logx)`
∴ `"d"/"dx"(x^x) = x^x(1 + logx)`
∴ `"du"/"dx" = 10^(x^x).log10.x^x(1 + logx)` ...(2)
Take, v = `x^(x^10)`
∴ log v = `logx^(x^10) = x^10.logx`
Differentiating both sides w.r.t. x, we get
`1/v."dv"/"dx" = "d"/"dx"(x^10logx)`
= `x^10."d"/"dx"(logx) + (logx)."d"/"dx"(x^10)`
= `x^10 xx 1/x + (logx)(10x^9)`
∴ `"dv"/"dx" = v[x^9 + 10x^9logx]`
∴ `"dv"/"dx" = x^(x^10).x^9(1 + 10logx)` ...(3)
Also, ω = `x^(10x)`
∴ log ω = `logx^(10x) = 10^x.logx`
Differentiating both sides w.r.t. x, we get
`1/omega ."dω"/"dx" = "d"/"dx"(10^x.logx)`
= `10^x."d"/"dx"(logx) + (logx)."d"/"dx"(10^x)`
= `10^x xx 1/x + (logx)(10^x.log10)`
∴ `"dω"/"dx" = ω[10^x/x + 10^x.(logx)(log10)]`
∴ `"dω"/"dx" = x^(10x).10^x[1/x + (logx)(log10)]` ...(4)
From (1),(2),(3) and (4), we get
`"dy"/"dx" = 10^(x*x).log10.x^x(1 + logx) + x^(x^10).x^9(1 + 10logx) + x^(10x).10^x[1/x + (logx)(log10)]`.
APPEARS IN
संबंधित प्रश्न
Differentiate the following w.r.t.x:
`sqrt(e^((3x + 2) + 5)`
Differentiate the following w.r.t.x: `log[tan(x/2)]`
Differentiate the following w.r.t.x: cot3[log(x3)]
Differentiate the following w.r.t.x: sec[tan (x4 + 4)]
Differentiate the following w.r.t.x:
(x2 + 4x + 1)3 + (x3− 5x − 2)4
Differentiate the following w.r.t.x: (1 + 4x)5 (3 + x −x2)8
Differentiate the following w.r.t.x: `(1 + sinx°)/(1 - sinx°)`
Differentiate the following w.r.t.x:
`(e^(2x) - e^(-2x))/(e^(2x) + e^(-2x))`
Differentiate the following w.r.t.x: `log[4^(2x)((x^2 + 5)/(sqrt(2x^3 - 4)))^(3/2)]`
Differentiate the following w.r.t.x: `log[(ex^2(5 - 4x)^(3/2))/root(3)(7 - 6x)]`
Differentiate the following w.r.t. x : `"cosec"^-1[1/cos(5^x)]`
Differentiate the following w.r.t. x : `cos^-1(sqrt((1 + cosx)/2))`
Differentiate the following w.r.t. x : `tan^-1((cos7x)/(1 + sin7x))`
Differentiate the following w.r.t. x : `sin^-1((cossqrt(x) + sinsqrt(x))/sqrt(2))`
Differentiate the following w.r.t. x :
`cos^-1[(3cos(e^x) + 2sin(e^x))/sqrt(13)]`
Differentiate the following w.r.t. x : `tan^-1((2x)/(1 - x^2))`
Differentiate the following w.r.t. x : `sin^-1 ((1 - 25x^2)/(1 + 25x^2))`
Differentiate the following w.r.t. x : `tan^-1((2sqrt(x))/(1 + 3x))`
Differentiate the following w.r.t. x : `tan^-1((2^x)/(1 + 2^(2x + 1)))`
Differentiate the following w.r.t. x : `root(3)((4x - 1)/((2x + 3)(5 - 2x)^2)`
Differentiate the following w.r.t. x : `(x^2 + 3)^(3/2).sin^3 2x.2^(x^2)`
Differentiate the following w.r.t. x: `x^(tan^(-1)x`
Differentiate the following w.r.t. x : `x^(e^x) + (logx)^(sinx)`
Differentiate the following w.r.t. x :
etanx + (logx)tanx
Differentiate the following w.r.t. x : `[(tanx)^(tanx)]^(tanx) "at" x = pi/(4)`
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `tan^-1((3x^2 - 4y^2)/(3x^2 + 4y^2))` = a2
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `e^((x^7 - y^7)/(x^7 + y^7)` = a
Differentiate y = etanx w.r. to x
Differentiate `cot^-1((cos x)/(1 + sinx))` w.r. to x
Differentiate `tan^-1((8x)/(1 - 15x^2))` w.r. to x
If the function f(x) = `(log (1 + "ax") - log (1 - "bx))/x, x ≠ 0` is continuous at x = 0 then, f(0) = _____.
If y = cosec x0, then `"dy"/"dx"` = ______.
If x = p sin θ, y = q cos θ, then `dy/dx` = ______
Find `(dy)/(dx)`, if x3 + x3y + xy2 + y3 = 81
Let f(x) be a polynomial function of the second degree. If f(1) = f(–1) and a1, a2, a3 are in AP, then f’(a1), f’(a2), f’(a3) are in ______.
If y = log (sec x + tan x), find `dy/dx`.