Advertisements
Advertisements
प्रश्न
Differentiate the following w.r.t.x: log[tan3x.sin4x.(x2 + 7)7]
उत्तर
Let y = log[tan3x.sin4x.(x2 + 7)7]
= log tan3x + log sin4x + log(x2 + 7)7
= 3log tanx + 4log sinx + 7log(x2 + 7)
Differentiating w.r.t. x, we get
`"dy"/"dx" = "d"/"dx"[3log tanx + 4 logsinx + 7 log(x^2 + 7)]`
= `3"d"/"dx"(log tan x) + 4"d"/"dx"(log sinx) + 7"d"/"dx"[log(x^2 + 7)]`
= `3 xx (1)/tanx ."d"/"dx"(tanx) + 4 xx (1)/sinx."d"/"dx"(sinx) + 7 xx (1)/(x^2 + 7)."d"/"dx"(x^2 + 7)`
= `3 xx (1)/tanx.sec^2x + 4 xx (1)/sinx.cosx + 7 xx (1)/(x^2 + 7).(2x + 0)`
= `3 xx "cosx"/"sinx" xx (1)/(cos^2x) + 4cotx + (14x)/(x^2 + 7)`
= `(6)/(2sinx cosx) + 4cot + (14x)/(x^2 + 7)`
= `(6)/(sin2x) + 4cotx + (14x)/(x^2 + 7)`
= `6"cosec"2x + 4cotx + (14x)/(x^2 + 7)`.
APPEARS IN
संबंधित प्रश्न
Differentiate the following w.r.t.x:
(x3 – 2x – 1)5
Differentiate the following w.r.t.x: `sqrt(x^2 + 4x - 7)`
Differentiate the following w.r.t.x: cos(x2 + a2)
Differentiate the following w.r.t.x: `e^(log[(logx)^2 - logx^2]`
Differentiate the following w.r.t.x: `sinsqrt(sinsqrt(x)`
Differentiate the following w.r.t.x:
sin2x2 – cos2x2
Differentiate the following w.r.t.x:
(x2 + 4x + 1)3 + (x3− 5x − 2)4
Differentiate the following w.r.t.x: `(1 + sinx°)/(1 - sinx°)`
Differentiate the following w.r.t.x: `(e^sqrt(x) + 1)/(e^sqrt(x) - 1)`
Differentiate the following w.r.t.x: `log(sqrt((1 - sinx)/(1 + sinx)))`
Differentiate the following w.r.t.x: `log[4^(2x)((x^2 + 5)/(sqrt(2x^3 - 4)))^(3/2)]`
Differentiate the following w.r.t.x:
`(x^2 + 2)^4/(sqrt(x^2 + 5)`
Differentiate the following w.r.t. x :
`sin^-1(sqrt((1 + x^2)/2))`
Differentiate the following w.r.t. x : cos–1(1 –x2)
Differentiate the following w.r.t. x : `tan^-1((cos7x)/(1 + sin7x))`
Differentiate the following w.r.t. x : `cos^-1((sqrt(3)cosx - sinx)/(2))`
Differentiate the following w.r.t. x :
`cos^-1((1 - x^2)/(1 + x^2))`
Differentiate the following w.r.t. x : `sin^-1 ((1 - 25x^2)/(1 + 25x^2))`
Differentiate the following w.r.t. x :
`sin^(−1) ((1 − x^3)/(1 + x^3))`
Differentiate the following w.r.t. x : `cot^-1((4 - x - 2x^2)/(3x + 2))`
Differentiate the following w.r.t. x :
`(x + 1)^2/((x + 2)^3(x + 3)^4`
Differentiate the following w.r.t. x : (sin xx)
Differentiate the following w.r.t. x: xe + xx + ex + ee
Differentiate the following w.r.t. x : `10^(x^(x)) + x^(x(10)) + x^(10x)`
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : x7.y5 = (x + y)12
Show that `bb("dy"/"dx" = y/x)` in the following, where a and p are constant:
xpy4 = (x + y)p+4, p ∈ N
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants: `log((x^20 - y^20)/(x^20 + y^20))` = 20
If y = `sqrt(cos x + sqrt(cos x + sqrt(cos x + ...... ∞)`, show that `("d"y)/("d"x) = (sin x)/(1 - 2y)`
If the function f(x) = `(log (1 + "ax") - log (1 - "bx))/x, x ≠ 0` is continuous at x = 0 then, f(0) = _____.
If `t = v^2/3`, then `(-v/2 (df)/dt)` is equal to, (where f is acceleration) ______
Derivative of (tanx)4 is ______
A particle moves so that x = 2 + 27t - t3. The direction of motion reverses after moving a distance of ______ units.
The volume of a spherical balloon is increasing at the rate of 10 cubic centimetre per minute. The rate of change of the surface of the balloon at the instant when its radius is 4 centimetres, is ______
Solve `x + y (dy)/(dx) = sec(x^2 + y^2)`
Find `(dy)/(dx)`, if x3 + x3y + xy2 + y3 = 81
Differentiate `tan^-1 (sqrt((3 - x)/(3 + x)))` w.r.t. x.