Advertisements
Advertisements
प्रश्न
Differentiate the following w.r.t. x :
`sin^-1(sqrt((1 + x^2)/2))`
उत्तर
Let y = `sin^-1(sqrt((1 + x^2)/2))`
Differentiating w.r.t. x, we get
`"dy"/"dx" = "d"/"dx"[sin^-1(sqrt((1 + x^2)/2))]`
= `(1)/(sqrt(1 - (sqrt((1 + x^2)/2)))^2)."d"/"dx"(sqrt((1 + x^2)/2))`
= `(1)/(sqrt((1 - (1 + x^2)/2))^2) . 1/(2sqrt((1 + x^2)/2)) . 1/2 . 2x`
= `(1)/(((sqrt(2 - 1 + x^2))/sqrt2)^2) . 1/((2sqrt(1 + x^2))/sqrt2) . 1/2 . 2x`
= `(1)/((sqrt(1 - x^2)/sqrt2)^2) . 1/((2sqrt(1 + x^2))/sqrt2) . 1/2 . 2x`
= `(1)/(((1 - x^2)/2)) . 1/(2((sqrt(1 + x^2))/sqrt2)) . 1/2 . 2x`
= `2/((1 - x^2)) . sqrt2/(2sqrt(1 + x^2)) . 1/2 . 2x`
= `(2 . sqrt2 . 2x)/((1 - x^2) . 2 . 2 . sqrt(1 + x^2))`
= `(sqrt2 . x)/((1 - x)^2 (sqrt(1 + x^2))`
= `x/sqrt((1 - x^2)(1 + x^2)`
= `x/sqrt(1 - x^4)`
APPEARS IN
संबंधित प्रश्न
Differentiate the following w.r.t.x: `sqrt(x^2 + 4x - 7)`
Differentiate the following w.r.t.x: `(8)/(3root(3)((2x^2 - 7x - 5)^11`
Differentiate the following w.r.t.x: `sinsqrt(sinsqrt(x)`
Differentiate the following w.r.t.x: (1 + 4x)5 (3 + x −x2)8
Differentiate the following w.r.t.x: `x/(sqrt(7 - 3x)`
Differentiate the following w.r.t.x: (1 + sin2 x)2 (1 + cos2 x)3
Differentiate the following w.r.t.x: `(e^sqrt(x) + 1)/(e^sqrt(x) - 1)`
Differentiate the following w.r.t.x: log[tan3x.sin4x.(x2 + 7)7]
Differentiate the following w.r.t.x:
`log(sqrt((1 - cos3x)/(1 + cos3x)))`
Differentiate the following w.r.t.x:
`(x^2 + 2)^4/(sqrt(x^2 + 5)`
Differentiate the following w.r.t. x : `sin^-1(x^(3/2))`
Differentiate the following w.r.t. x : `cot^-1[cot(e^(x^2))]`
Differentiate the following w.r.t. x : `"cosec"^-1((1)/(4cos^3 2x - 3cos2x))`
Differentiate the following w.r.t. x : `tan^-1((cos7x)/(1 + sin7x))`
Differentiate the following w.r.t. x :
`cos^-1((1 - x^2)/(1 + x^2))`
Differentiate the following w.r.t. x : `tan^-1((2x)/(1 - x^2))`
Differentiate the following w.r.t. x : `sin^-1((1 - x^2)/(1 + x^2))`
Differentiate the following w.r.t. x : cos–1(3x – 4x3)
Differentiate the following w.r.t. x : `sin^-1 ((1 - 25x^2)/(1 + 25x^2))`
Differentiate the following w.r.t. x :
`sin^(−1) ((1 − x^3)/(1 + x^3))`
Differentiate the following w.r.t.x:
`cot^-1((1 + 35x^2)/(2x))`
Differentiate the following w.r.t. x :
`tan^(−1)[(2^(x + 2))/(1 − 3(4^x))]`
Differentiate the following w.r.t. x : `cot^-1((a^2 - 6x^2)/(5ax))`
Differentiate the following w.r.t. x : `((x^2 + 2x + 2)^(3/2))/((sqrt(x) + 3)^3(cosx)^x`
Differentiate the following w.r.t. x : `(x^5.tan^3 4x)/(sin^2 3x)`
Differentiate the following w.r.t. x : (sin xx)
Differentiate the following w.r.t. x : `x^(e^x) + (logx)^(sinx)`
Differentiate the following w.r.t. x : `[(tanx)^(tanx)]^(tanx) "at" x = pi/(4)`
Solve the following :
The values of f(x), g(x), f'(x) and g'(x) are given in the following table :
x | f(x) | g(x) | f'(x) | fg'(x) |
– 1 | 3 | 2 | – 3 | 4 |
2 | 2 | – 1 | – 5 | – 4 |
Match the following :
A Group – Function | B Group – Derivative |
(A)`"d"/"dx"[f(g(x))]"at" x = -1` | 1. – 16 |
(B)`"d"/"dx"[g(f(x) - 1)]"at" x = -1` | 2. 20 |
(C)`"d"/"dx"[f(f(x) - 3)]"at" x = 2` | 3. – 20 |
(D)`"d"/"dx"[g(g(x))]"at"x = 2` | 5. 12 |
Differentiate y = `sqrt(x^2 + 5)` w.r. to x
Differentiate sin2 (sin−1(x2)) w.r. to x
Differentiate `tan^-1((8x)/(1 - 15x^2))` w.r. to x
If `t = v^2/3`, then `(-v/2 (df)/dt)` is equal to, (where f is acceleration) ______
A particle moves so that x = 2 + 27t - t3. The direction of motion reverses after moving a distance of ______ units.
If x = p sin θ, y = q cos θ, then `dy/dx` = ______
Let f(x) be a polynomial function of the second degree. If f(1) = f(–1) and a1, a2, a3 are in AP, then f’(a1), f’(a2), f’(a3) are in ______.