Advertisements
Advertisements
प्रश्न
Differentiate the following w.r.t. x :
`sin^-1(sqrt((1 + x^2)/2))`
उत्तर
Let y = `sin^-1(sqrt((1 + x^2)/2))`
Differentiating w.r.t. x, we get
`"dy"/"dx" = "d"/"dx"[sin^-1(sqrt((1 + x^2)/2))]`
= `(1)/(sqrt(1 - (sqrt((1 + x^2)/2)))^2)."d"/"dx"(sqrt((1 + x^2)/2))`
= `(1)/(sqrt((1 - (1 + x^2)/2))^2) . 1/(2sqrt((1 + x^2)/2)) . 1/2 . 2x`
= `(1)/(((sqrt(2 - 1 + x^2))/sqrt2)^2) . 1/((2sqrt(1 + x^2))/sqrt2) . 1/2 . 2x`
= `(1)/((sqrt(1 - x^2)/sqrt2)^2) . 1/((2sqrt(1 + x^2))/sqrt2) . 1/2 . 2x`
= `(1)/(((1 - x^2)/2)) . 1/(2((sqrt(1 + x^2))/sqrt2)) . 1/2 . 2x`
= `2/((1 - x^2)) . sqrt2/(2sqrt(1 + x^2)) . 1/2 . 2x`
= `(2 . sqrt2 . 2x)/((1 - x^2) . 2 . 2 . sqrt(1 + x^2))`
= `(sqrt2 . x)/((1 - x)^2 (sqrt(1 + x^2))`
= `x/sqrt((1 - x^2)(1 + x^2)`
= `x/sqrt(1 - x^4)`
APPEARS IN
संबंधित प्रश्न
Differentiate the following w.r.t.x:
`(2x^(3/2) - 3x^(4/3) - 5)^(5/2)`
Differentiate the following w.r.t.x: cos(x2 + a2)
Differentiate the following w.r.t.x: `sqrt(tansqrt(x)`
Differentiate the following w.r.t.x: [log {log(logx)}]2
Differentiate the following w.r.t.x:
`(x^3 - 5)^5/(x^3 + 3)^3`
Differentiate the following w.r.t.x:
`sqrt(cosx) + sqrt(cossqrt(x)`
Differentiate the following w.r.t.x:
log (sec 3x+ tan 3x)
Differentiate the following w.r.t.x: log[tan3x.sin4x.(x2 + 7)7]
Differentiate the following w.r.t.x: `log[4^(2x)((x^2 + 5)/(sqrt(2x^3 - 4)))^(3/2)]`
Differentiate the following w.r.t. x : cosec–1 (e–x)
Differentiate the following w.r.t. x : `cot^-1[cot(e^(x^2))]`
Differentiate the following w.r.t. x : `tan^-1[(1 + cos(x/3))/(sin(x/3))]`
Differentiate the following w.r.t. x : `tan^-1((cos7x)/(1 + sin7x))`
Differentiate the following w.r.t. x : `sin^-1((4sinx + 5cosx)/sqrt(41))`
Differentiate the following w.r.t. x : `sin^-1((cossqrt(x) + sinsqrt(x))/sqrt(2))`
Differentiate the following w.r.t. x :
`cos^-1[(3cos(e^x) + 2sin(e^x))/sqrt(13)]`
Differentiate the following w.r.t. x : `sin^-1((1 - x^2)/(1 + x^2))`
Differentiate the following w.r.t. x :
`sin^(−1) ((1 − x^3)/(1 + x^3))`
Differentiate the following w.r.t. x :
`tan^(−1)[(2^(x + 2))/(1 − 3(4^x))]`
Differentiate the following w.r.t. x : `cot^-1((a^2 - 6x^2)/(5ax))`
Differentiate the following w.r.t. x :
`tan^-1((5 -x)/(6x^2 - 5x - 3))`
Differentiate the following w.r.t. x : `cot^-1((4 - x - 2x^2)/(3x + 2))`
Differentiate the following w.r.t. x : `root(3)((4x - 1)/((2x + 3)(5 - 2x)^2)`
Differentiate the following w.r.t. x : `(x^5.tan^3 4x)/(sin^2 3x)`
Differentiate the following w.r.t. x:
`x^(x^x) + e^(x^x)`
Differentiate the following w.r.t. x : (logx)x – (cos x)cotx
Differentiate the following w.r.t. x :
(sin x)tanx + (cos x)cotx
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `tan^-1((3x^2 - 4y^2)/(3x^2 + 4y^2))` = a2
If y is a function of x and log (x + y) = 2xy, then the value of y'(0) = ______.
Differentiate y = etanx w.r. to x
Differentiate `sin^-1((2cosx + 3sinx)/sqrt(13))` w.r. to x
If y = `sqrt(cos x + sqrt(cos x + sqrt(cos x + ...... ∞)`, show that `("d"y)/("d"x) = (sin x)/(1 - 2y)`
If the function f(x) = `(log (1 + "ax") - log (1 - "bx))/x, x ≠ 0` is continuous at x = 0 then, f(0) = _____.
If x = eθ, (sin θ – cos θ), y = eθ (sin θ + cos θ) then `dy/dx` at θ = `π/4` is ______.
Differentiate `tan^-1 (sqrt((3 - x)/(3 + x)))` w.r.t. x.