Advertisements
Advertisements
प्रश्न
Differentiate the following w.r.t.x:
`(x^3 - 5)^5/(x^3 + 3)^3`
उत्तर
Let y = `(x^3 - 5)^5/(x^3 + 3)^3`
Differentiating w.r.t.x, we get
`"dy"/"dx" = "d"/"dx"[(x^3 - 5)^5/(x^3 + 3)^3]`
`"dy"/"dx" = [(x^3 + 3)^3 × "d"/"dx"(x^3 - 5)^5 - (x^3 - 5)^5 "d"/"dx" (x^3 + 3)^3]/[(x^3 + 3)^3]^2`
`"dy"/"dx" = [(x^3 + 3)^3 × 5(x^3 - 5)^4 × "d"/"dx"(x^3 - 5) - (x^3 - 5)^5 × 3(x^3 + 3)^2 × "d"/"dx" (x^3 + 3)]/(x^3 + 3)^6`
`"dy"/"dx" = [(x^3 + 3)^3 × 5(x^3 - 5)^4 × (3x^2 - 0) - (x^3 - 5)^5 × 3(x^3 + 3)^2 × (3x^2 + 0)]/(x^3 + 3)^6`
`"dy"/"dx" = [3x^2(x^3 + 3)^2(x^3 - 5)^4[5(x^3 + 3) - 3(x^3 - 5)]]/(x^3 + 3)^6`
`"dy"/"dx" = [3x^2(x^3 + 3)^2(x^3 - 5)^4[5x^3 + 15 - 3x^3 + 15]]/(x^3 + 3)^6`
`"dy"/"dx" = [3x^2cancel((x^3 + 3)^2)(x^3 - 5)^4(2x^3 + 30)]/(x^3 + 3)^(cancel(6)4)`
`"dy"/"dx" = [3x^2(x^3 - 5)^4(2x^3 + 30)]/(x^3 + 3)^4`
`"dy"/"dx" = [3x^2(x^3 - 5)^4 . 2(x^3 + 15)]/(x^3 + 3)^4`
`"dy"/"dx" = [6x^2(x^3 + 15)(x^3 - 5)^4]/(x^3 + 3)^4`
APPEARS IN
संबंधित प्रश्न
Differentiate the following w.r.t.x:
(x3 – 2x – 1)5
Differentiate the following w.r.t.x:
`(2x^(3/2) - 3x^(4/3) - 5)^(5/2)`
Differentiate the following w.r.t.x: `sqrt(x^2 + 4x - 7)`
Differentiate the following w.r.t.x:
`sqrt(e^((3x + 2) + 5)`
Differentiate the following w.r.t.x: `log[sec (e^(x^2))]`
Differentiate the following w.r.t.x:
sin2x2 – cos2x2
Differentiate the following w.r.t.x:
(x2 + 4x + 1)3 + (x3− 5x − 2)4
Differentiate the following w.r.t.x: `x/(sqrt(7 - 3x)`
Differentiate the following w.r.t.x: (1 + sin2 x)2 (1 + cos2 x)3
Differentiate the following w.r.t.x: `(e^sqrt(x) + 1)/(e^sqrt(x) - 1)`
Differentiate the following w.r.t.x:
`log(sqrt((1 + cos((5x)/2))/(1 - cos((5x)/2))))`
Differentiate the following w.r.t.x:
`(x^2 + 2)^4/(sqrt(x^2 + 5)`
Differentiate the following w.r.t. x : cosec–1 (e–x)
Differentiate the following w.r.t. x : cos–1(1 –x2)
Differentiate the following w.r.t. x : `cos^-1(sqrt((1 + cosx)/2))`
Differentiate the following w.r.t. x : `tan^-1[(1 - tan(x/2))/(1 + tan(x/2))]`
Differentiate the following w.r.t. x :
`cot^-1[(sqrt(1 + sin ((4x)/3)) + sqrt(1 - sin ((4x)/3)))/(sqrt(1 + sin ((4x)/3)) - sqrt(1 - sin ((4x)/3)))]`
Differentiate the following w.r.t. x : `sin^-1(2xsqrt(1 - x^2))`
Differentiate the following w.r.t. x :
`cos^-1 ((1 - 9^x))/((1 + 9^x)`
Differentiate the following w.r.t. x:
`tan^-1((2x^(5/2))/(1 - x^5))`
Differentiate the following w.r.t. x : `cot^-1((1 - sqrt(x))/(1 + sqrt(x)))`
Differentiate the following w.r.t.x:
`cot^-1((1 + 35x^2)/(2x))`
Differentiate the following w.r.t. x : `tan^-1((2^x)/(1 + 2^(2x + 1)))`
Differentiate the following w.r.t. x : `tan^-1((a + btanx)/(b - atanx))`
Differentiate the following w.r.t. x : `10^(x^(x)) + x^(x(10)) + x^(10x)`
Solve the following :
The values of f(x), g(x), f'(x) and g'(x) are given in the following table :
x | f(x) | g(x) | f'(x) | fg'(x) |
– 1 | 3 | 2 | – 3 | 4 |
2 | 2 | – 1 | – 5 | – 4 |
Match the following :
A Group – Function | B Group – Derivative |
(A)`"d"/"dx"[f(g(x))]"at" x = -1` | 1. – 16 |
(B)`"d"/"dx"[g(f(x) - 1)]"at" x = -1` | 2. 20 |
(C)`"d"/"dx"[f(f(x) - 3)]"at" x = 2` | 3. – 20 |
(D)`"d"/"dx"[g(g(x))]"at"x = 2` | 5. 12 |
Differentiate y = etanx w.r. to x
If y = `1 + x + x^2/(2!) + x^3/(3!) + x^4/(4!) + .....,` then `(d^2y)/(dx^2)` = ______
A particle moves so that x = 2 + 27t - t3. The direction of motion reverses after moving a distance of ______ units.
The volume of a spherical balloon is increasing at the rate of 10 cubic centimetre per minute. The rate of change of the surface of the balloon at the instant when its radius is 4 centimetres, is ______
If x = p sin θ, y = q cos θ, then `dy/dx` = ______
Solve `x + y (dy)/(dx) = sec(x^2 + y^2)`
Find `(dy)/(dx)`, if x3 + x3y + xy2 + y3 = 81
Let f(x) be a polynomial function of the second degree. If f(1) = f(–1) and a1, a2, a3 are in AP, then f’(a1), f’(a2), f’(a3) are in ______.