Advertisements
Advertisements
प्रश्न
Differentiate the following w.r.t.x:
(x3 – 2x – 1)5
उत्तर १
Let y = (x3 – 2x – 1)5
Differentiating w.r.t.x, we get
`"dy"/"dx" = "d"/"dx"` (x3 – 2x – 1)5
= 5(x3 – 2x – 1)4 × `"d"/"dx"` (x3 – 2x – 1)
= 5(x3 – 2x – 1)4 × (3x2 – 2 × 1 – 0)
= 5(3x2 – 2)(x3 – 2x – 1)4.
उत्तर २
Let y = (x3 – 2x – 1)5
Put u = x3 – 2x – 1.
Then y = u5
∴ `"dy"/"du" = "d"/"du"` (u5) = 5u4
= 5(x3 – 2x – 1)4
and
`"du"/"dx" = "d"/"dx"`(x3 – 2x – 1)
= 3x2 – 2 × 1 – 0
= 3x2 – 2
∴ `"dy"/"dx" = "dy"/"du" xx "du"/"dx"`
= 5(x3 – 2x – 1)4 (3x2 – 2)
= 5(3x2 – 2)(x3 – 2x – 1)4.
APPEARS IN
संबंधित प्रश्न
Differentiate the following w.r.t.x:
`sqrt(x^2 + sqrt(x^2 + 1)`
Differentiate the following w.r.t.x:
`(sqrt(3x - 5) - 1/sqrt(3x - 5))^5`
Differentiate the following w.r.t.x: cos(x2 + a2)
Differentiate the following w.r.t.x: `5^(sin^3x + 3)`
Differentiate the following w.r.t.x: [log {log(logx)}]2
Differentiate the following w.r.t.x:
(x2 + 4x + 1)3 + (x3− 5x − 2)4
Differentiate the following w.r.t.x: `(1 + sinx°)/(1 - sinx°)`
Differentiate the following w.r.t.x:
`(e^(2x) - e^(-2x))/(e^(2x) + e^(-2x))`
Differentiate the following w.r.t.x: `(e^sqrt(x) + 1)/(e^sqrt(x) - 1)`
Differentiate the following w.r.t. x : `tan^-1(sqrt((1 + cosx)/(1 - cosx)))`
Differentiate the following w.r.t. x : `cos^-1((sqrt(3)cosx - sinx)/(2))`
Differentiate the following w.r.t. x : `sin^-1((cossqrt(x) + sinsqrt(x))/sqrt(2))`
Differentiate the following w.r.t. x : `sin^-1(2xsqrt(1 - x^2))`
Differentiate the following w.r.t. x : `cos^-1((e^x - e^(-x))/(e^x + e^(-x)))`
Differentiate the following w.r.t. x : `cot^-1((1 - sqrt(x))/(1 + sqrt(x)))`
Differentiate the following w.r.t.x:
`cot^-1((1 + 35x^2)/(2x))`
Differentiate the following w.r.t. x : `cot^-1((4 - x - 2x^2)/(3x + 2))`
Differentiate the following w.r.t. x :
`(x + 1)^2/((x + 2)^3(x + 3)^4`
Differentiate the following w.r.t. x : `(x^2 + 3)^(3/2).sin^3 2x.2^(x^2)`
Differentiate the following w.r.t. x: `x^(tan^(-1)x`
Differentiate the following w.r.t. x : (sin x)x
Differentiate the following w.r.t. x : (logx)x – (cos x)cotx
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `sin((x^3 - y^3)/(x^3 + y^3))` = a3
Differentiate y = etanx w.r. to x
If f(x) is odd and differentiable, then f′(x) is
If y = `"e"^(1 + logx)` then find `("d"y)/("d"x)`
Differentiate sin2 (sin−1(x2)) w.r. to x
y = {x(x - 3)}2 increases for all values of x lying in the interval.
A particle moves so that x = 2 + 27t - t3. The direction of motion reverses after moving a distance of ______ units.
If y = `(3x^2 - 4x + 7.5)^4, "then" dy/dx` is ______
The differential equation of the family of curves y = `"ae"^(2(x + "b"))` is ______.
If y = cosec x0, then `"dy"/"dx"` = ______.
Differentiate `tan^-1 (sqrt((3 - x)/(3 + x)))` w.r.t. x.
If `cos((x^2 - y^2)/(x^2 + y^2))` = log a, show that `dy/dx = y/x`
If y = log (sec x + tan x), find `dy/dx`.