Advertisements
Advertisements
प्रश्न
Differentiate the following w.r.t. x :
`cot^-1[(sqrt(1 + sin ((4x)/3)) + sqrt(1 - sin ((4x)/3)))/(sqrt(1 + sin ((4x)/3)) - sqrt(1 - sin ((4x)/3)))]`
उत्तर
Let y = `cot^-1[(sqrt(1 + sin ((4x)/3)) + sqrt(1 - sin ((4x)/3)))/(sqrt(1 + sin ((4x)/3)) - sqrt(1 - sin ((4x)/3)))]`
= `1 + sin ((4x)/3)`
= `1 + cos(pi/2 - (4x)/3)`
= `2cos^2(pi/4 - (2x)/3)`
∴ `sqrt(1 + sin((4x)/3)) = sqrt(2)cos(pi/4 - (2x)/3)`
Also, `1 - sin ((4x)/3)`
= `1 - cos(pi/2 - (4x)/3)`
= `2sin^2(pi/4 - (2x)/3)`
∴ `sqrt(1 - sin((4x)/3)) = sqrt(2)sin(pi/4 - (2x)/3)`
∴ `(sqrt(1 + sin ((4x)/3)) + sqrt(1 - sin ((4x)/3)))/(sqrt(1 + sin((4x)/3) - sqrt(1 - sin((4x)/3)`
= `(sqrt(2)cos(pi/4 - (2x)/3) + sqrt(2)sin(pi/4 - (2x)/3))/(sqrt(2)cos(pi/4 - (2x)/3) - sqrt(2)sin(pi/4 - (2x)/3)`
= `(cos(pi/4 - (2x)/3) + sin(pi/4 - (2x)/3))/(cos(pi/4 - (2x)/3) - sin(pi/4 - (2x)/3)`
= `(1 + tan(pi/4 - (2x)/3))/(1 - tan(pi/4 - (2x)/3)) ...["Dividing by" cos(pi/4 - (2x)/3)`
= `(tan pi/4 + tan(pi/4 - (2x)/3))/(1 - tan pi/4. tan(pi/4 - (2x)/3)) ...[∵ tan pi/4 = 1]`
= `tan[pi/4 + pi/4 - (2x)/3]`
= `tan(pi/2 - (2x)/3)`
= `cot((2x)/3)`
∴ y = `cot^-1[cot((2x)/3)] = (2x)/(3)`
Differentiating w.r.t. x, we get
`"dy"/"dx" = "d"/"dx"((2x)/3)`
= `(2)/(3)"d"/"dx"(x)`
= `(2)/(3) xx 1`
= `(2)/(3)`
APPEARS IN
संबंधित प्रश्न
Differentiate the following w.r.t.x:
(x3 – 2x – 1)5
Differentiate the following w.r.t.x: `"cosec"(sqrt(cos x))`
Differentiate the following w.r.t.x: `e^(3sin^2x - 2cos^2x)`
Differentiate the following w.r.t.x: [log {log(logx)}]2
Differentiate the following w.r.t.x: (1 + sin2 x)2 (1 + cos2 x)3
Differentiate the following w.r.t.x: log[tan3x.sin4x.(x2 + 7)7]
Differentiate the following w.r.t.x:
`log(sqrt((1 - cos3x)/(1 + cos3x)))`
Differentiate the following w.r.t.x:
y = (25)log5(secx) − (16)log4(tanx)
Differentiate the following w.r.t. x : `tan^-1(sqrt(x))`
Differentiate the following w.r.t. x : `sin^-1(x^(3/2))`
Differentiate the following w.r.t. x :
cos3[cos–1(x3)]
Differentiate the following w.r.t. x : `tan^-1[(1 - tan(x/2))/(1 + tan(x/2))]`
Differentiate the following w.r.t. x : `"cosec"^-1((1)/(4cos^3 2x - 3cos2x))`
Differentiate the following w.r.t.x:
tan–1 (cosec x + cot x)
Differentiate the following w.r.t. x :
`cos^-1((1 - x^2)/(1 + x^2))`
Differentiate the following w.r.t. x :
`cos^-1 ((1 - 9^x))/((1 + 9^x)`
Differentiate the following w.r.t. x :
`sin^-1(4^(x + 1/2)/(1 + 2^(4x)))`
Differentiate the following w.r.t. x:
`tan^-1((2x^(5/2))/(1 - x^5))`
Differentiate the following w.r.t. x : `tan^-1((8x)/(1 - 15x^2))`
Differentiate the following w.r.t.x:
`cot^-1((1 + 35x^2)/(2x))`
Differentiate the following w.r.t. x :
`tan^(−1)[(2^(x + 2))/(1 − 3(4^x))]`
Differentiate the following w.r.t. x :
`(x + 1)^2/((x + 2)^3(x + 3)^4`
Differentiate the following w.r.t. x: `x^(tan^(-1)x`
Differentiate the following w.r.t. x : (sin x)x
Differentiate the following w.r.t. x :
etanx + (logx)tanx
Differentiate the following w.r.t. x :
(sin x)tanx + (cos x)cotx
Differentiate the following w.r.t. x : `10^(x^(x)) + x^(x(10)) + x^(10x)`
Differentiate the following w.r.t. x : `[(tanx)^(tanx)]^(tanx) "at" x = pi/(4)`
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `tan^-1((3x^2 - 4y^2)/(3x^2 + 4y^2))` = a2
Differentiate y = `sqrt(x^2 + 5)` w.r. to x
If y = `tan^-1[sqrt((1 + cos x)/(1 - cos x))]`, find `("d"y)/("d"x)`
If y = `sqrt(cos x + sqrt(cos x + sqrt(cos x + ...... ∞)`, show that `("d"y)/("d"x) = (sin x)/(1 - 2y)`
If y = `(3x^2 - 4x + 7.5)^4, "then" dy/dx` is ______
If f(x) = `(3x + 1)/(5x - 4)` and t = `(5 + 3x)/(x - 4)`, then f(t) is ______
The differential equation of the family of curves y = `"ae"^(2(x + "b"))` is ______.
The volume of a spherical balloon is increasing at the rate of 10 cubic centimetre per minute. The rate of change of the surface of the balloon at the instant when its radius is 4 centimetres, is ______
If y = log (sec x + tan x), find `dy/dx`.