हिंदी

Differentiate the following w.r.t. x : cot-1[1+sin (4x3)+1-sin (4x3)1+sin (4x3)-1-sin (4x3)] - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Differentiate the following w.r.t. x :

`cot^-1[(sqrt(1 + sin  ((4x)/3)) + sqrt(1 - sin  ((4x)/3)))/(sqrt(1 + sin  ((4x)/3)) - sqrt(1 - sin  ((4x)/3)))]`

योग

उत्तर

Let y = `cot^-1[(sqrt(1 + sin  ((4x)/3)) + sqrt(1 - sin  ((4x)/3)))/(sqrt(1 + sin  ((4x)/3)) - sqrt(1 - sin  ((4x)/3)))]`

= `1 + sin ((4x)/3)`

= `1 + cos(pi/2 - (4x)/3)`

= `2cos^2(pi/4 - (2x)/3)`

∴ `sqrt(1 + sin((4x)/3)) = sqrt(2)cos(pi/4 - (2x)/3)`

Also, `1 - sin ((4x)/3)`

= `1 - cos(pi/2 - (4x)/3)`

= `2sin^2(pi/4 - (2x)/3)`

∴ `sqrt(1 - sin((4x)/3)) = sqrt(2)sin(pi/4 - (2x)/3)`

∴ `(sqrt(1 + sin  ((4x)/3)) + sqrt(1 - sin ((4x)/3)))/(sqrt(1 + sin((4x)/3) - sqrt(1 - sin((4x)/3)`

= `(sqrt(2)cos(pi/4 - (2x)/3) + sqrt(2)sin(pi/4 - (2x)/3))/(sqrt(2)cos(pi/4 - (2x)/3) - sqrt(2)sin(pi/4 - (2x)/3)`

= `(cos(pi/4 - (2x)/3) + sin(pi/4 - (2x)/3))/(cos(pi/4 - (2x)/3) - sin(pi/4 - (2x)/3)`

= `(1 + tan(pi/4 - (2x)/3))/(1 - tan(pi/4 - (2x)/3))                                ...["Dividing by" cos(pi/4 - (2x)/3)` 

= `(tan  pi/4 + tan(pi/4 - (2x)/3))/(1 - tan  pi/4. tan(pi/4 - (2x)/3))                        ...[∵ tan  pi/4 = 1]`

= `tan[pi/4 + pi/4 - (2x)/3]`

= `tan(pi/2 - (2x)/3)`

= `cot((2x)/3)`

∴ y = `cot^-1[cot((2x)/3)] = (2x)/(3)`
Differentiating w.r.t. x, we get
`"dy"/"dx" = "d"/"dx"((2x)/3)`

= `(2)/(3)"d"/"dx"(x)`

= `(2)/(3) xx 1`

= `(2)/(3)`

shaalaa.com
Differentiation
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Differentiation - Exercise 1.2 [पृष्ठ ३०]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 1 Differentiation
Exercise 1.2 | Q 7.12 | पृष्ठ ३०

संबंधित प्रश्न

Differentiate the following w.r.t.x:

(x3 – 2x – 1)5


Differentiate the following w.r.t.x: `"cosec"(sqrt(cos x))`


Differentiate the following w.r.t.x: `e^(3sin^2x - 2cos^2x)`


Differentiate the following w.r.t.x: [log {log(logx)}]2


Differentiate the following w.r.t.x: (1 + sin2 x)2 (1 + cos2 x)3 


Differentiate the following w.r.t.x: log[tan3x.sin4x.(x2 + 7)7]


Differentiate the following w.r.t.x:

`log(sqrt((1 - cos3x)/(1 + cos3x)))`


Differentiate the following w.r.t.x:

y = (25)log5(secx) − (16)log4(tanx) 


Differentiate the following w.r.t. x : `tan^-1(sqrt(x))`


Differentiate the following w.r.t. x : `sin^-1(x^(3/2))`


Differentiate the following w.r.t. x :

cos3[cos–1(x3)]


Differentiate the following w.r.t. x : `tan^-1[(1 - tan(x/2))/(1 + tan(x/2))]`


Differentiate the following w.r.t. x : `"cosec"^-1((1)/(4cos^3 2x - 3cos2x))`


Differentiate the following w.r.t.x:

tan–1 (cosec x + cot x)


Differentiate the following w.r.t. x :

`cos^-1((1 - x^2)/(1 + x^2))`


Differentiate the following w.r.t. x :

`cos^-1  ((1 - 9^x))/((1 + 9^x)`


Differentiate the following w.r.t. x :

`sin^-1(4^(x + 1/2)/(1 + 2^(4x)))`


Differentiate the following w.r.t. x:

`tan^-1((2x^(5/2))/(1 - x^5))`


Differentiate the following w.r.t. x : `tan^-1((8x)/(1 - 15x^2))`


Differentiate the following w.r.t.x:

`cot^-1((1 + 35x^2)/(2x))`


Differentiate the following w.r.t. x :

`tan^(−1)[(2^(x + 2))/(1 − 3(4^x))]`


Differentiate the following w.r.t. x :

`(x +  1)^2/((x + 2)^3(x + 3)^4`


Differentiate the following w.r.t. x: `x^(tan^(-1)x`


Differentiate the following w.r.t. x : (sin x)x 


Differentiate the following w.r.t. x :

etanx + (logx)tanx 


Differentiate the following w.r.t. x :

(sin x)tanx + (cos x)cotx 


Differentiate the following w.r.t. x : `10^(x^(x)) + x^(x(10)) + x^(10x)`


Differentiate the following w.r.t. x : `[(tanx)^(tanx)]^(tanx) "at"  x = pi/(4)`


Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `tan^-1((3x^2 - 4y^2)/(3x^2 + 4y^2))` = a2 


Differentiate y = `sqrt(x^2 + 5)` w.r. to x


If y = `tan^-1[sqrt((1 + cos x)/(1 - cos x))]`, find `("d"y)/("d"x)`


If y = `sqrt(cos x + sqrt(cos x + sqrt(cos x + ...... ∞)`, show that `("d"y)/("d"x) = (sin x)/(1 - 2y)`


If y = `(3x^2 - 4x + 7.5)^4, "then"  dy/dx` is ______ 


If f(x) = `(3x + 1)/(5x - 4)` and t = `(5 + 3x)/(x - 4)`, then f(t) is ______ 


The differential equation of the family of curves y = `"ae"^(2(x + "b"))` is ______.


The volume of a spherical balloon is increasing at the rate of 10 cubic centimetre per minute. The rate of change of the surface of the balloon at the instant when its radius is 4 centimetres, is ______


If y = log (sec x + tan x), find `dy/dx`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×