हिंदी

Differentiate the following w.r.t. x : x5.tan34xsin23x - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Differentiate the following w.r.t. x : `(x^5.tan^3 4x)/(sin^2 3x)`

योग

उत्तर

Let y = `(x^5.tan^3 4x)/(sin^2 3x)`

Then log y = `log[(x^5.tan^3 4x)/(sin^23x)]`

= logx5 + log tan34x – log sin23x

= 5logx + 3log (tan4x) – 2log (sin3x)

Differentiating both sides w.r.t. x, we get

`(1)/y."dy"/"dx" = 5"d"/"dx"(logx) + 3"d"/"dx"[log(tan4x)] - 2"d"/"dx"[log(sin3x)]`

= `5 xx (1)/x + 3 xx (1)/(tan4x)."d"/"dx"(tan4x) - 2 xx (1)/(sin3x)."d"/"dx"(sin3x)`

= `5/x + 3 xx (1)/(tan4x) xx sec^2  4x."d"/"dx"(4x) - 2 xx (1)/(sin3x) xx cos3x."d"/"dx"(3x)`

= `5/x + 3.(cos4x)/(sin4x) xx (1)/(cos^2 4x) xx 4 - 2cot3x xx 3`

= `5/x + (24)/(2sin4x.cos4x) - 6cot3x`

∴ `"dy"/"dx" = y[5/x + 24/(sin8x) - 6cot3x]`

= `(x^5.tan^3 4x)/(sin^2 3x)[5/x + 24"cosec"8x - 6cot3x]`.

shaalaa.com
Differentiation
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Differentiation - Exercise 1.3 [पृष्ठ ३९]

APPEARS IN

संबंधित प्रश्न

Differentiate the following w.r.t.x: `sqrt(x^2 + 4x - 7)`


Differentiate the following w.r.t.x:

`(sqrt(3x - 5) - 1/sqrt(3x - 5))^5`


Differentiate the following w.r.t.x:

`sqrt(e^((3x + 2) +  5)`


Differentiate the following w.r.t.x: sec[tan (x4 + 4)]


Differentiate the following w.r.t.x: `e^(log[(logx)^2 - logx^2]`


Differentiate the following w.r.t.x: `(1 + sinx°)/(1 - sinx°)`


Differentiate the following w.r.t.x: log[tan3x.sin4x.(x2 + 7)7]


Differentiate the following w.r.t.x: `log[4^(2x)((x^2 + 5)/(sqrt(2x^3 - 4)))^(3/2)]`


Differentiate the following w.r.t. x : cosec–1 (e–x)


Differentiate the following w.r.t. x : `tan^-1(sqrt(x))`


Differentiate the following w.r.t. x : `cot^-1((sin3x)/(1 + cos3x))`


Differentiate the following w.r.t. x : `tan^-1((cos7x)/(1 + sin7x))`


Differentiate the following w.r.t.x:

tan–1 (cosec x + cot x)


Differentiate the following w.r.t. x :

`cos^-1[(3cos(e^x) + 2sin(e^x))/sqrt(13)]`


Differentiate the following w.r.t. x :

`sin^(−1) ((1 − x^3)/(1 + x^3))`


Differentiate the following w.r.t. x : `cot^-1((1 - sqrt(x))/(1 + sqrt(x)))`


Differentiate the following w.r.t. x : `tan^-1((8x)/(1 - 15x^2))`


Differentiate the following w.r.t. x : `tan^-1((2sqrt(x))/(1 + 3x))`


Differentiate the following w.r.t. x :

`tan^(−1)[(2^(x + 2))/(1 − 3(4^x))]`


Differentiate the following w.r.t. x : `10^(x^(x)) + x^(x(10)) + x^(10x)`


Differentiate the following w.r.t. x : `[(tanx)^(tanx)]^(tanx) "at"  x = pi/(4)`


Show that `bb("dy"/"dx" = y/x)` in the following, where a and p are constant:

xpy4 = (x + y)p+4, p ∈ N


If y is a function of x and log (x + y) = 2xy, then the value of y'(0) = ______.


Differentiate y = `sqrt(x^2 + 5)` w.r. to x


If y = `tan^-1[sqrt((1 + cos x)/(1 - cos x))]`, find `("d"y)/("d"x)`


Differentiate `cot^-1((cos x)/(1 + sinx))` w.r. to x


If y = `sin^-1[("a"cosx - "b"sinx)/sqrt("a"^2 + "b"^2)]`, then find `("d"y)/("d"x)`


A particle moves so that x = 2 + 27t - t3. The direction of motion reverses after moving a distance of ______ units.


The weight W of a certain stock of fish is given by W = nw, where n is the size of stock and w is the average weight of a fish. If n and w change with time t as n = 2t2 + 3 and w = t2 - t + 2, then the rate of change of W with respect to t at t = 1 is ______ 


If y = cosec x0, then `"dy"/"dx"` = ______.


If x = p sin θ, y = q cos θ, then `dy/dx` = ______ 


Solve `x + y (dy)/(dx) = sec(x^2 + y^2)`


Let f(x) be a polynomial function of the second degree. If f(1) = f(–1) and a1, a2, a3 are in AP, then f’(a1), f’(a2), f’(a3) are in ______.


If `cos((x^2 - y^2)/(x^2 + y^2))` = log a, show that `dy/dx = y/x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×