Advertisements
Advertisements
प्रश्न
Differentiate the following w.r.t.x: `e^(log[(logx)^2 - logx^2]`
उत्तर
Let y = `e^(log[(logx)^2 − logx^2]`
∴ y = (logx)2 – log x2 ...[∵ elog x = x]
Differentiating w.r.t. x, we get
`"dy"/"dx" = "d"/"dx"[(log x)^2 − logx^2]`
∴ `"dy"/"dx" = "d"/"dx"(log x)^2 − "d"/"dx"(log x^2)`
∴ `"dy"/"dx" = 2 log x. "d"/"dx"(log x) − 1/x^2. "d"/"dx" x^2`
∴ `"dy"/"dx" = 2 log x. 1/x − 1/x^2. 2x`
∴ `"dy"/"dx" = (2log x)/x − 2/x`
APPEARS IN
संबंधित प्रश्न
Differentiate the following w.r.t.x:
`(2x^(3/2) - 3x^(4/3) - 5)^(5/2)`
Differentiate the following w.r.t.x: `(8)/(3root(3)((2x^2 - 7x - 5)^11`
Differentiate the following w.r.t.x: `log[tan(x/2)]`
Differentiate the following w.r.t.x: cot3[log(x3)]
Differentiate the following w.r.t.x: `"cosec"(sqrt(cos x))`
Differentiate the following w.r.t.x: sec[tan (x4 + 4)]
Differentiate the following w.r.t.x: `sinsqrt(sinsqrt(x)`
Differentiate the following w.r.t.x: [log {log(logx)}]2
Differentiate the following w.r.t.x: log[tan3x.sin4x.(x2 + 7)7]
Differentiate the following w.r.t.x: `log[4^(2x)((x^2 + 5)/(sqrt(2x^3 - 4)))^(3/2)]`
Differentiate the following w.r.t. x : tan–1(log x)
Differentiate the following w.r.t. x : cot–1(x3)
Differentiate the following w.r.t. x : `tan^-1(sqrt(x))`
Differentiate the following w.r.t. x : `sin^-1((4sinx + 5cosx)/sqrt(41))`
Differentiate the following w.r.t. x : `cos^-1((3cos3x - 4sin3x)/5)`
Differentiate the following w.r.t. x :
`cos^-1((1 - x^2)/(1 + x^2))`
Differentiate the following w.r.t. x : `cos^-1((e^x - e^(-x))/(e^x + e^(-x)))`
Differentiate the following w.r.t. x :
`sin^-1(4^(x + 1/2)/(1 + 2^(4x)))`
Differentiate the following w.r.t. x : `sin^-1 ((1 - 25x^2)/(1 + 25x^2))`
Differentiate the following w.r.t. x : `cot^-1((1 - sqrt(x))/(1 + sqrt(x)))`
Differentiate the following w.r.t. x : `tan^-1((8x)/(1 - 15x^2))`
Differentiate the following w.r.t. x :
`tan^(−1)[(2^(x + 2))/(1 − 3(4^x))]`
Differentiate the following w.r.t. x :
`tan^-1((5 -x)/(6x^2 - 5x - 3))`
Differentiate the following w.r.t. x :
`(x + 1)^2/((x + 2)^3(x + 3)^4`
Differentiate the following w.r.t. x : `root(3)((4x - 1)/((2x + 3)(5 - 2x)^2)`
Differentiate the following w.r.t. x : `(x^2 + 3)^(3/2).sin^3 2x.2^(x^2)`
Differentiate the following w.r.t. x : `(x^5.tan^3 4x)/(sin^2 3x)`
Differentiate the following w.r.t. x: `x^(tan^(-1)x`
Differentiate the following w.r.t. x : (sin xx)
Differentiate the following w.r.t. x : (logx)x – (cos x)cotx
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `e^((x^7 - y^7)/(x^7 + y^7)` = a
Differentiate y = etanx w.r. to x
Differentiate sin2 (sin−1(x2)) w.r. to x
Derivative of (tanx)4 is ______
y = {x(x - 3)}2 increases for all values of x lying in the interval.
If y = `(3x^2 - 4x + 7.5)^4, "then" dy/dx` is ______
If f(x) = `(3x + 1)/(5x - 4)` and t = `(5 + 3x)/(x - 4)`, then f(t) is ______
Let f(x) = `(1 - tan x)/(4x - pi), x ne pi/4, x ∈ [0, pi/2]`. If f(x) is continuous in `[0, pi/2]`, then f`(pi/4)` is ______.