Advertisements
Advertisements
प्रश्न
Differentiate the following w.r.t.x:
(x2 + 4x + 1)3 + (x3− 5x − 2)4
उत्तर
Let y = (x2 + 4x + 1)3 + (x3− 5x − 2)4
Differentiating w.r.t. x, we get
`"dy"/"dx" = "d"/"dx"[(x^2 + 4x + 1)^3 + (x^3 - 5x - 2)^4]`
`= "d"/"dx"(x^2 + 4x + 1)^3 + "d"/"dx"(x^3 - 5x - 2)^4`
`= 3(x^2 + 4x + 1)^2."d"/"dx"(x^2 + 4x + 1) + 4(x^3 - 5x - 2)^3. "d"/"dx"(x^3 - 5x - 2)`
= 3(x2 + 4x + 1)2. (2x + 4 × 1 + 0) + 4(x3 – 5x – 2)3. (3x2 – 5 × 1 – 0)
= 3(2x + 4)(x2 + 4x + 1)2 + 4(3x2 – 5)(x3 – 5x – 2)3
= 3 × 2(x + 2)(x2 + 4x + 1)2 + 4(3x2 – 5)(x3 – 5x – 2)3
= 6(x + 2)(x2 + 4x + 1)2 + 4(3x2 – 5)(x3 – 5x – 2)3
APPEARS IN
संबंधित प्रश्न
Differentiate the following w.r.t.x:
(x3 – 2x – 1)5
Differentiate the following w.r.t.x: cos2[log(x2 + 7)]
Differentiate the following w.r.t.x: sec[tan (x4 + 4)]
Differentiate the following w.r.t.x: `sinsqrt(sinsqrt(x)`
Differentiate the following w.r.t.x:
sin2x2 – cos2x2
Differentiate the following w.r.t.x:
`(x^3 - 5)^5/(x^3 + 3)^3`
Differentiate the following w.r.t.x:
`sqrt(cosx) + sqrt(cossqrt(x)`
Differentiate the following w.r.t.x: `(e^sqrt(x) + 1)/(e^sqrt(x) - 1)`
Differentiate the following w.r.t.x:
`log(sqrt((1 - cos3x)/(1 + cos3x)))`
Differentiate the following w.r.t. x :
`sin^-1(sqrt((1 + x^2)/2))`
Differentiate the following w.r.t. x : cos–1(1 –x2)
Differentiate the following w.r.t. x : `cos^-1(sqrt((1 + cosx)/2))`
Differentiate the following w.r.t. x : `tan^-1((cos7x)/(1 + sin7x))`
Differentiate the following w.r.t.x:
tan–1 (cosec x + cot x)
Differentiate the following w.r.t. x : `sin^-1((cossqrt(x) + sinsqrt(x))/sqrt(2))`
Differentiate the following w.r.t. x : `sin^-1((1 - x^2)/(1 + x^2))`
Differentiate the following w.r.t. x : `sin^-1(2xsqrt(1 - x^2))`
Differentiate the following w.r.t. x : `sin^-1 ((1 - 25x^2)/(1 + 25x^2))`
Differentiate the following w.r.t. x : `tan^-1((8x)/(1 - 15x^2))`
Differentiate the following w.r.t. x : `cot^-1((a^2 - 6x^2)/(5ax))`
Differentiate the following w.r.t. x :
`tan^-1((5 -x)/(6x^2 - 5x - 3))`
Differentiate the following w.r.t. x : `cot^-1((4 - x - 2x^2)/(3x + 2))`
Differentiate the following w.r.t. x : `(x^2 + 3)^(3/2).sin^3 2x.2^(x^2)`
Differentiate the following w.r.t. x : (sin x)x
Differentiate the following w.r.t. x : `10^(x^(x)) + x^(x(10)) + x^(10x)`
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants: `log((x^20 - y^20)/(x^20 + y^20))` = 20
If y is a function of x and log (x + y) = 2xy, then the value of y'(0) = ______.
Differentiate y = `sqrt(x^2 + 5)` w.r. to x
If y = sin−1 (2x), find `("d"y)/(""d"x)`
If the function f(x) = `(log (1 + "ax") - log (1 - "bx))/x, x ≠ 0` is continuous at x = 0 then, f(0) = _____.
If x = `sqrt("a"^(sin^-1 "t")), "y" = sqrt("a"^(cos^-1 "t")), "then" "dy"/"dx"` = ______
If y = `(3x^2 - 4x + 7.5)^4, "then" dy/dx` is ______
The differential equation of the family of curves y = `"ae"^(2(x + "b"))` is ______.
If x = p sin θ, y = q cos θ, then `dy/dx` = ______
Solve `x + y (dy)/(dx) = sec(x^2 + y^2)`
Find `(dy)/(dx)`, if x3 + x3y + xy2 + y3 = 81
If y = log (sec x + tan x), find `dy/dx`.