Advertisements
Advertisements
प्रश्न
Differentiate the following w.r.t.x: cos2[log(x2 + 7)]
उत्तर
Let y = cos2[log(x2 + 7)]
Differentiating w.r.t. x, we get
`"dy"/"dx" = "d"/"dx"{cos[log(x^2 + 7)]}^2`
= `2cos[log(x^2 + 7)]."d"/"dx"{cos[log(x^2 + 7)]}`
= `2cos[log(x^2 + 7)].{-sin[log(x^2 + 7)]}."d"/"dx"[log(x^2 + 7)]`
= `-2sin[log(x^2 + 7)].cos[log(x^2 + 7)] xx (1)/(x^2 + 7)."d"/"dx"(x^2 + 7)`
= `-sin[2log(x^2 + 7)] xx (1)/(x^2 + 7).(2x + 0)` ...[∵ 2sinx · cosx = sin2x]
= `(-2x.sin[2log(x^2 + 7)])/(x^2 + 7)`.
APPEARS IN
संबंधित प्रश्न
Differentiate the following w.r.t.x:
(x3 – 2x – 1)5
Differentiate the following w.r.t.x:
`(sqrt(3x - 5) - 1/sqrt(3x - 5))^5`
Differentiate the following w.r.t.x: `log[tan(x/2)]`
Differentiate the following w.r.t.x: `"cosec"(sqrt(cos x))`
Differentiate the following w.r.t.x: `sinsqrt(sinsqrt(x)`
Differentiate the following w.r.t.x:
(x2 + 4x + 1)3 + (x3− 5x − 2)4
Differentiate the following w.r.t.x:
`sqrt(cosx) + sqrt(cossqrt(x)`
Differentiate the following w.r.t.x: `cot(logx/2) - log(cotx/2)`
Differentiate the following w.r.t.x:
`(e^(2x) - e^(-2x))/(e^(2x) + e^(-2x))`
Differentiate the following w.r.t.x:
y = (25)log5(secx) − (16)log4(tanx)
Differentiate the following w.r.t. x : cosec–1 (e–x)
Differentiate the following w.r.t. x : cot–1(4x)
Differentiate the following w.r.t. x : `"cosec"^-1[1/cos(5^x)]`
Differentiate the following w.r.t. x : `cos^-1(sqrt((1 + cosx)/2))`
Differentiate the following w.r.t. x : `cos^-1((3cos3x - 4sin3x)/5)`
Differentiate the following w.r.t. x : `"cosec"^-1[(10)/(6sin(2^x) - 8cos(2^x))]`
Differentiate the following w.r.t. x : `sin^-1(2xsqrt(1 - x^2))`
Differentiate the following w.r.t. x :
`sin^-1(4^(x + 1/2)/(1 + 2^(4x)))`
Differentiate the following w.r.t. x : `sin^-1 ((1 - 25x^2)/(1 + 25x^2))`
Differentiate the following w.r.t. x :
`tan^(−1)[(2^(x + 2))/(1 − 3(4^x))]`
Differentiate the following w.r.t. x : `cot^-1((a^2 - 6x^2)/(5ax))`
Differentiate the following w.r.t. x :
`tan^-1((5 -x)/(6x^2 - 5x - 3))`
Differentiate the following w.r.t. x : `((x^2 + 2x + 2)^(3/2))/((sqrt(x) + 3)^3(cosx)^x`
Differentiate the following w.r.t. x : (logx)x – (cos x)cotx
Differentiate the following w.r.t. x :
(sin x)tanx + (cos x)cotx
Differentiate the following w.r.t. x : `10^(x^(x)) + x^(x(10)) + x^(10x)`
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `tan^-1((3x^2 - 4y^2)/(3x^2 + 4y^2))` = a2
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `cos^-1((7x^4 + 5y^4)/(7x^4 - 5y^4)) = tan^-1a`
Differentiate sin2 (sin−1(x2)) w.r. to x
y = {x(x - 3)}2 increases for all values of x lying in the interval.
The differential equation of the family of curves y = `"ae"^(2(x + "b"))` is ______.
If x2 + y2 - 2axy = 0, then `dy/dx` equals ______
Let f(x) = `(1 - tan x)/(4x - pi), x ne pi/4, x ∈ [0, pi/2]`. If f(x) is continuous in `[0, pi/2]`, then f`(pi/4)` is ______.
The volume of a spherical balloon is increasing at the rate of 10 cubic centimetre per minute. The rate of change of the surface of the balloon at the instant when its radius is 4 centimetres, is ______
If x = p sin θ, y = q cos θ, then `dy/dx` = ______
Solve `x + y (dy)/(dx) = sec(x^2 + y^2)`
If x = eθ, (sin θ – cos θ), y = eθ (sin θ + cos θ) then `dy/dx` at θ = `π/4` is ______.