Advertisements
Advertisements
प्रश्न
Differentiate the following w.r.t. x : `sin^-1(2xsqrt(1 - x^2))`
उत्तर
Let y = `sin^-1(2xsqrt(1 - x^2))`
Put x = sinθ.
Then θ = sin–1x
∴ y = `sin^-1(2sinθsqrt(1 - sin^2θ))`
= sin–1(2sinθ cosθ)
= sin–1(sin2θ)
= 2θ
= 2sin–1x
Differentiating w.r.t. x, we get
`"dy"/"dx" = "d"/"dx"(2sin^-1x)`
= `2"d"/"dx"(sin^-1x)`
= `2 xx 1/sqrt(1 - x^2)`
= `2/sqrt(1 - x^2)`
We can also put x = cosθ.
Then θ = cos–1x
∴ y = `sin^-1(2cosθsqrt(1 - cos^2θ))`
= sin–1(2cosθ sinθ)
= sin–1(sin2θ)
= 2θ
= 2cos–1x
Differentiating w.r.t. x, we get
`"dy"/"dx" = "d"/"dx"(2cos^-1 x)`
= `2"d"/"dx"(cos^-1 x)`
= `2 xx (-1)/sqrt(1 - x^2)`
= `(-2)/sqrt(1 - x^2)`
Hence, `"dy"/"dx" = ± (2)/sqrt(1 - x^2)`.
APPEARS IN
संबंधित प्रश्न
Differentiate the following w.r.t.x:
(x3 – 2x – 1)5
Differentiate the following w.r.t.x: `sqrt(x^2 + 4x - 7)`
Differentiate the following w.r.t.x:
`sqrt(e^((3x + 2) + 5)`
Differentiate the following w.r.t.x: `5^(sin^3x + 3)`
Differentiate the following w.r.t.x: log[cos(x3 – 5)]
Differentiate the following w.r.t.x: (1 + 4x)5 (3 + x −x2)8
Differentiate the following w.r.t.x: `x/(sqrt(7 - 3x)`
Differentiate the following w.r.t.x: `(1 + sinx°)/(1 - sinx°)`
Differentiate the following w.r.t.x: `cot(logx/2) - log(cotx/2)`
Differentiate the following w.r.t.x: log[tan3x.sin4x.(x2 + 7)7]
Differentiate the following w.r.t.x: `log(sqrt((1 - sinx)/(1 + sinx)))`
Differentiate the following w.r.t. x : tan–1(log x)
Differentiate the following w.r.t. x : cosec–1 (e–x)
Differentiate the following w.r.t. x : `tan^-1(sqrt(x))`
Differentiate the following w.r.t. x : `"cosec"^-1[1/cos(5^x)]`
Differentiate the following w.r.t. x : `cos^-1(sqrt((1 + cosx)/2))`
Differentiate the following w.r.t. x : `tan^-1[(1 - tan(x/2))/(1 + tan(x/2))]`
Differentiate the following w.r.t. x : `tan^-1(sqrt((1 + cosx)/(1 - cosx)))`
Differentiate the following w.r.t. x : `"cosec"^-1[(10)/(6sin(2^x) - 8cos(2^x))]`
Differentiate the following w.r.t. x :
`cos^-1 ((1 - 9^x))/((1 + 9^x)`
Differentiate the following w.r.t. x :
`sin^(−1) ((1 − x^3)/(1 + x^3))`
Differentiate the following w.r.t. x : `cot^-1((1 - sqrt(x))/(1 + sqrt(x)))`
Differentiate the following w.r.t. x : `tan^-1((8x)/(1 - 15x^2))`
Differentiate the following w.r.t. x : `tan^-1((2^x)/(1 + 2^(2x + 1)))`
Differentiate the following w.r.t. x : `root(3)((4x - 1)/((2x + 3)(5 - 2x)^2)`
Differentiate the following w.r.t. x :
etanx + (logx)tanx
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : x7.y5 = (x + y)12
If y is a function of x and log (x + y) = 2xy, then the value of y'(0) = ______.
Differentiate y = `sqrt(x^2 + 5)` w.r. to x
If y = `tan^-1[sqrt((1 + cos x)/(1 - cos x))]`, find `("d"y)/("d"x)`
Differentiate sin2 (sin−1(x2)) w.r. to x
Differentiate `tan^-1((8x)/(1 - 15x^2))` w.r. to x
If y = `1 + x + x^2/(2!) + x^3/(3!) + x^4/(4!) + .....,` then `(d^2y)/(dx^2)` = ______
A particle moves so that x = 2 + 27t - t3. The direction of motion reverses after moving a distance of ______ units.
If y = cosec x0, then `"dy"/"dx"` = ______.
Find `(dy)/(dx)`, if x3 + x3y + xy2 + y3 = 81
The value of `d/(dx)[tan^-1((a - x)/(1 + ax))]` is ______.
If y = log (sec x + tan x), find `dy/dx`.