मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Differentiate the following w.r.t. x: etanx + (logx)tanx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Differentiate the following w.r.t. x :

etanx + (logx)tanx 

बेरीज

उत्तर

Let y = etanx + (logx)tanx 
Put u = (logx)tanx  
∴ log u = log (log x)tanx = (tan x).(log log x)
Differentiating both sides w.r.t. x, we get
`1/u."du"/"dx" = "d"/"dx"[(tan x).(log logx)]`

= `(tanx)."d"/"dx"(log log x) + (log log x)."d"/"dx"(tan x)`

= `tanx xx 1/logx."d"/"dx"(logx) + (log log x)(sec^2x)`

= `tanx xx 1/logx xx 1/x + (log log x)(sec^2x)`

∴ `"du"/"dx" = u[tanx/(xlogx) + (loglogx)(sec^2x)]`

= `(logx)^(tanx)[tanx(xlogx) + (log log x)(sec^2x)]`

Now, y = etanx + u
∴ `"dy"/"dx" = "d"/"dx"(e^tanx) + "du"/"dx"`

= `e^(tanx)."d"/"dx"(tanx) + "du"/"dx"`

= `e^(tanx).sec^2x + (logx)^(tanx)[tanx/(xlogx) + (log log x)(sec^2x)]`

shaalaa.com
Differentiation
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Differentiation - Exercise 1.3 [पृष्ठ ४०]

APPEARS IN

संबंधित प्रश्‍न

Differentiate the following w.r.t.x:

`sqrt(x^2 + sqrt(x^2 + 1)`


Differentiate the following w.r.t.x:

`sqrt(e^((3x + 2) +  5)`


Differentiate the following w.r.t.x: `sqrt(tansqrt(x)`


Differentiate the following w.r.t.x:

tan[cos(sinx)]


Differentiate the following w.r.t.x: `sinsqrt(sinsqrt(x)`


Differentiate the following w.r.t.x: `log_(e^2) (log x)`


Differentiate the following w.r.t.x: (1 + 4x)5 (3 + x −x2)


Differentiate the following w.r.t.x: (1 + sin2 x)2 (1 + cos2 x)3 


Differentiate the following w.r.t.x:

`(e^(2x) - e^(-2x))/(e^(2x) + e^(-2x))`


Differentiate the following w.r.t.x: log[tan3x.sin4x.(x2 + 7)7]


Differentiate the following w.r.t.x:

`log(sqrt((1 + cos((5x)/2))/(1 - cos((5x)/2))))`


Differentiate the following w.r.t.x: `log[(ex^2(5 - 4x)^(3/2))/root(3)(7 - 6x)]`


Differentiate the following w.r.t.x:

`(x^2 + 2)^4/(sqrt(x^2 + 5)`


Differentiate the following w.r.t. x : tan–1(log x)


Differentiate the following w.r.t. x : cot–1(4x)


Differentiate the following w.r.t. x :

`sin^-1(sqrt((1 + x^2)/2))`


Differentiate the following w.r.t. x : cos–1(1 –x2)


Differentiate the following w.r.t. x : `cos^-1(sqrt((1 + cosx)/2))`


Differentiate the following w.r.t. x : `tan^-1(sqrt((1 + cosx)/(1 - cosx)))`


Differentiate the following w.r.t. x : `sin^-1((1 - x^2)/(1 + x^2))`


Differentiate the following w.r.t. x : `sin^-1(2xsqrt(1 - x^2))`


Differentiate the following w.r.t. x : cos–1(3x – 4x3)


Differentiate the following w.r.t. x : `cos^-1((e^x -  e^(-x))/(e^x +  e^(-x)))`


Differentiate the following w.r.t. x :

`sin^-1(4^(x + 1/2)/(1 + 2^(4x)))`


Differentiate the following w.r.t. x :

`sin^(−1) ((1 − x^3)/(1 + x^3))`


Differentiate the following w.r.t. x:

`tan^-1((2x^(5/2))/(1 - x^5))`


Differentiate the following w.r.t.x:

`cot^-1((1 + 35x^2)/(2x))`


Differentiate the following w.r.t. x :

`tan^-1((5 -x)/(6x^2 - 5x - 3))`


Differentiate the following w.r.t. x : (logx)x – (cos x)cotx 


Differentiate the following w.r.t. x : `x^(e^x) + (logx)^(sinx)`


Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `tan^-1((3x^2 - 4y^2)/(3x^2 + 4y^2))` = a2 


Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `e^((x^7 - y^7)/(x^7 + y^7)` = a


If y = sin−1 (2x), find `("d"y)/(""d"x)` 


Differentiate `cot^-1((cos x)/(1 + sinx))` w.r. to x


Differentiate `tan^-1((8x)/(1 - 15x^2))` w.r. to x


Derivative of (tanx)4 is ______ 


The value of `d/(dx)[tan^-1((a - x)/(1 + ax))]` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×