Advertisements
Advertisements
प्रश्न
Differentiate the following w.r.t.x:
`sqrt(cosx) + sqrt(cossqrt(x)`
उत्तर
Let y = `sqrt(cosx) + sqrt(cossqrt(x)`
Differentiating w.r.t. x, we get
`"dy"/"dx" = "d"/"dx"[sqrt(cosx) + sqrt(cossqrt(x))]`
= `"d"/"dx"(cosx)^(1/2) + "d"/"dx"(cossqrt(x))^(1/2)`
= `1/2(cosx)^(-1/2)."d"/"dx"(cosx) + 1/2(cossqrt(x))^(-1/2)."d"/"dx"(cossqrt(x))`
= `(1)/(2sqrt(cosx)).(-sinx) + (1)/(2sqrt(cossqrt(x))) xx (-sinsqrt(x))."d"/"dx"(sqrt(x))`
= `(-sinx)/(2sqrt(cosx)) - (sinsqrt(x))/(2sqrt(cossqrt(x))) xx (1)/(2sqrt(x)`
= `(-sinx)/(2sqrt(cosx)) - (sinsqrt(x))/(4sqrt(x)sqrt(cossqrt(x)`
APPEARS IN
संबंधित प्रश्न
Differentiate the following w.r.t.x:
(x3 – 2x – 1)5
Differentiate the following w.r.t.x: cos(x2 + a2)
Differentiate the following w.r.t.x:
`sqrt(e^((3x + 2) + 5)`
Differentiate the following w.r.t.x: `"cosec"(sqrt(cos x))`
Differentiate the following w.r.t.x: `log[sec (e^(x^2))]`
Differentiate the following w.r.t.x: `log_(e^2) (log x)`
Differentiate the following w.r.t.x: `(e^sqrt(x) + 1)/(e^sqrt(x) - 1)`
Differentiate the following w.r.t.x: `log(sqrt((1 - sinx)/(1 + sinx)))`
Differentiate the following w.r.t.x:
`(x^2 + 2)^4/(sqrt(x^2 + 5)`
Differentiate the following w.r.t. x : cosec–1 (e–x)
Differentiate the following w.r.t. x : `sin^-1(x^(3/2))`
Differentiate the following w.r.t. x : `sin^4[sin^-1(sqrt(x))]`
Differentiate the following w.r.t. x :
`cos^-1(sqrt(1 - cos(x^2))/2)`
Differentiate the following w.r.t. x : `cot^-1((sin3x)/(1 + cos3x))`
Differentiate the following w.r.t.x:
tan–1 (cosec x + cot x)
Differentiate the following w.r.t. x :
`cos^-1[(3cos(e^x) + 2sin(e^x))/sqrt(13)]`
Differentiate the following w.r.t. x :
`cos^-1((1 - x^2)/(1 + x^2))`
Differentiate the following w.r.t. x : `sin^-1((1 - x^2)/(1 + x^2))`
Differentiate the following w.r.t. x:
`tan^-1((2x^(5/2))/(1 - x^5))`
Differentiate the following w.r.t. x : `cot^-1((1 - sqrt(x))/(1 + sqrt(x)))`
Differentiate the following w.r.t.x:
`cot^-1((1 + 35x^2)/(2x))`
Differentiate the following w.r.t. x : (sin x)x
Differentiate the following w.r.t. x : (logx)x – (cos x)cotx
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants: `log((x^20 - y^20)/(x^20 + y^20))` = 20
Differentiate y = `sqrt(x^2 + 5)` w.r. to x
Differentiate y = etanx w.r. to x
If y = `"e"^(1 + logx)` then find `("d"y)/("d"x)`
If y = `tan^-1[sqrt((1 + cos x)/(1 - cos x))]`, find `("d"y)/("d"x)`
Differentiate `cot^-1((cos x)/(1 + sinx))` w.r. to x
If y = `(3x^2 - 4x + 7.5)^4, "then" dy/dx` is ______
If x = p sin θ, y = q cos θ, then `dy/dx` = ______
Let f(x) be a polynomial function of the second degree. If f(1) = f(–1) and a1, a2, a3 are in AP, then f’(a1), f’(a2), f’(a3) are in ______.
Differentiate `tan^-1 (sqrt((3 - x)/(3 + x)))` w.r.t. x.
Diffierentiate: `tan^-1((a + b cos x)/(b - a cos x))` w.r.t.x.