मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Differentiate the following w.r.t. x : sin-1(4sinx+5cosx41) - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Differentiate the following w.r.t. x : `sin^-1((4sinx + 5cosx)/sqrt(41))`

बेरीज

उत्तर

Let y = `sin^-1((4sinx + 5cosx)/sqrt(41))`

= `sin^-1[(sinx)((4)/(sqrt(41))) + (cosx)((5)/(sqrt(41)))]`

Since, `(4/sqrt(41))^2 + (5/sqrt(41))^2 = (16)/(41) + (25)/(41) = 1`,

we can write, `(4)/sqrt(41) = cos ∞ and (5)/sqrt(41) = sin ∞`.

∴ y = sin–1 (sin x cos ∞ + cos x sin ∞)
= sin–1[sin(x + ∞)]
= x + ∞, where ∞ is a constant
Differentiating w.r.t. x, we get
`"dy"/"dx" = "d"/"dx"(x + ∞)`

= `"d"/"dx"(x) + "d"/"dx"(∞)`
= 1 + 0
= 1.

shaalaa.com
Differentiation
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Differentiation - Exercise 1.2 [पृष्ठ ३०]

APPEARS IN

संबंधित प्रश्‍न

Differentiate the following w.r.t.x:

(x3 – 2x – 1)5


Differentiate the following w.r.t.x: `(8)/(3root(3)((2x^2 - 7x - 5)^11`


Differentiate the following w.r.t.x: `log[tan(x/2)]`


Differentiate the following w.r.t.x: cot3[log(x3)]


Differentiate the following w.r.t.x: sec[tan (x4 + 4)]


Differentiate the following w.r.t.x: `e^(log[(logx)^2 - logx^2]`


Differentiate the following w.r.t.x: `sinsqrt(sinsqrt(x)`


Differentiate the following w.r.t.x:

(x2 + 4x + 1)3 + (x3− 5x − 2)4 


Differentiate the following w.r.t.x: `x/(sqrt(7 - 3x)`


Differentiate the following w.r.t.x:

`(x^3 - 5)^5/(x^3 + 3)^3`


Differentiate the following w.r.t.x:

`log(sqrt((1 - cos3x)/(1 + cos3x)))`


Differentiate the following w.r.t. x : cot–1(4x)


Differentiate the following w.r.t. x : `tan^-1[(1 - tan(x/2))/(1 + tan(x/2))]`


Differentiate the following w.r.t. x : `tan^-1((cos7x)/(1 + sin7x))`


Differentiate the following w.r.t. x : `tan^-1(sqrt((1 + cosx)/(1 - cosx)))`


Differentiate the following w.r.t. x :

`cot^-1[(sqrt(1 + sin  ((4x)/3)) + sqrt(1 - sin  ((4x)/3)))/(sqrt(1 + sin  ((4x)/3)) - sqrt(1 - sin  ((4x)/3)))]`


Differentiate the following w.r.t. x : `cos^-1((sqrt(3)cosx - sinx)/(2))`


Differentiate the following w.r.t. x : `tan^-1((2x)/(1 - x^2))`


Differentiate the following w.r.t. x : cos–1(3x – 4x3)


Differentiate the following w.r.t. x : `tan^-1((2sqrt(x))/(1 + 3x))`


Differentiate the following w.r.t. x : (sin x)x 


Differentiate the following w.r.t. x: xe + xx + ex + ee 


Differentiate the following w.r.t. x : `x^(e^x) + (logx)^(sinx)`


Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : x7.y5 = (x + y)12 


Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `sec((x^5 + y^5)/(x^5 - y^5))` = a2 


Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `cos^-1((7x^4 + 5y^4)/(7x^4 - 5y^4)) = tan^-1a`


Show that `"dy"/"dx" = y/x` in the following, where a and p are constants: `log((x^20 - y^20)/(x^20 + y^20))` = 20


If y is a function of x and log (x + y) = 2xy, then the value of y'(0) = ______.


If y = sin−1 (2x), find `("d"y)/(""d"x)` 


If y = `"e"^(1 + logx)` then find `("d"y)/("d"x)` 


Differentiate `sin^-1((2cosx + 3sinx)/sqrt(13))` w.r. to x


If the function f(x) = `(log (1 + "ax") - log (1 - "bx))/x, x ≠ 0` is continuous at x = 0 then, f(0) = _____.


If x = `sqrt("a"^(sin^-1 "t")), "y" = sqrt("a"^(cos^-1 "t")), "then" "dy"/"dx"` = ______


If f(x) = `(3x + 1)/(5x - 4)` and t = `(5 + 3x)/(x - 4)`, then f(t) is ______ 


The differential equation of the family of curves y = `"ae"^(2(x + "b"))` is ______.


Let f(x) be a polynomial function of the second degree. If f(1) = f(–1) and a1, a2, a3 are in AP, then f’(a1), f’(a2), f’(a3) are in ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×