Advertisements
Advertisements
प्रश्न
Differentiate `sin^-1((2cosx + 3sinx)/sqrt(13))` w.r. to x
उत्तर
Let y = `sin^-1((2cosx + 3sinx)/sqrt(13))`
= `sin^-1((2cosx)/sqrt(13) + (3sinx)/sqrt(13))`
Put `2/sqrt(13)` = sin t and `3/sqrt(13)` = cos t
Also, sin2t + cos2t = `4/13 + 9/13` = 1
and tan t = `2/3`
∴ t = `tan^-1(2/3)`
∴ y = sin–1(sin t . cos x + cos t . sin x)
= sin–1[sin(t + x)]
= t + x
= `tan^-1(2/3) + x`
Differentiating w. r. t. x, we get
`("d"y)/("d"x) = "d"/("d"x)[tan^-1(2/3) + x]`
= 0 + 1
= 1
संबंधित प्रश्न
Differentiate the following w.r.t.x:
`sqrt(x^2 + sqrt(x^2 + 1)`
Differentiate the following w.r.t.x: cot3[log(x3)]
Differentiate the following w.r.t.x:
tan[cos(sinx)]
Differentiate the following w.r.t.x: `sinsqrt(sinsqrt(x)`
Differentiate the following w.r.t.x: `log[sec (e^(x^2))]`
Differentiate the following w.r.t.x: `log_(e^2) (log x)`
Differentiate the following w.r.t.x: [log {log(logx)}]2
Differentiate the following w.r.t.x: `(e^sqrt(x) + 1)/(e^sqrt(x) - 1)`
Differentiate the following w.r.t.x:
`log(sqrt((1 - cos3x)/(1 + cos3x)))`
Differentiate the following w.r.t.x: `log(sqrt((1 - sinx)/(1 + sinx)))`
Differentiate the following w.r.t.x:
`(x^2 + 2)^4/(sqrt(x^2 + 5)`
Differentiate the following w.r.t. x : tan–1(log x)
Differentiate the following w.r.t. x : cosec–1 (e–x)
Differentiate the following w.r.t. x : cot–1(4x)
Differentiate the following w.r.t. x : `tan^-1(sqrt(x))`
Differentiate the following w.r.t. x : cos–1(1 –x2)
Differentiate the following w.r.t. x : `tan^-1((cos7x)/(1 + sin7x))`
Differentiate the following w.r.t. x : `"cosec"^-1[(10)/(6sin(2^x) - 8cos(2^x))]`
Differentiate the following w.r.t. x : `tan^-1((2x)/(1 - x^2))`
Differentiate the following w.r.t. x : `cos^-1((e^x - e^(-x))/(e^x + e^(-x)))`
Differentiate the following w.r.t. x : `sin^-1 ((1 - 25x^2)/(1 + 25x^2))`
Differentiate the following w.r.t. x : `cot^-1((1 - sqrt(x))/(1 + sqrt(x)))`
Differentiate the following w.r.t. x : `cot^-1((a^2 - 6x^2)/(5ax))`
Differentiate the following w.r.t. x : `root(3)((4x - 1)/((2x + 3)(5 - 2x)^2)`
Differentiate the following w.r.t. x : `(x^2 + 3)^(3/2).sin^3 2x.2^(x^2)`
Differentiate the following w.r.t. x: `x^(tan^(-1)x`
Differentiate the following w.r.t. x: xe + xx + ex + ee
Differentiate the following w.r.t. x : `10^(x^(x)) + x^(x(10)) + x^(10x)`
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `sec((x^5 + y^5)/(x^5 - y^5))` = a2
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants: `log((x^20 - y^20)/(x^20 + y^20))` = 20
Show that `"dy"/"dx" = y/x` in the following, where a and p are constants : `e^((x^7 - y^7)/(x^7 + y^7)` = a
Differentiate y = etanx w.r. to x
If y = sin−1 (2x), find `("d"y)/(""d"x)`
If f(x) is odd and differentiable, then f′(x) is
Differentiate `cot^-1((cos x)/(1 + sinx))` w.r. to x
If `t = v^2/3`, then `(-v/2 (df)/dt)` is equal to, (where f is acceleration) ______
Derivative of (tanx)4 is ______
y = {x(x - 3)}2 increases for all values of x lying in the interval.
A particle moves so that x = 2 + 27t - t3. The direction of motion reverses after moving a distance of ______ units.
If x2 + y2 - 2axy = 0, then `dy/dx` equals ______
Find `(dy)/(dx)`, if x3 + x3y + xy2 + y3 = 81
Differentiate `tan^-1 (sqrt((3 - x)/(3 + x)))` w.r.t. x.
If y = log (sec x + tan x), find `dy/dx`.