Advertisements
Advertisements
प्रश्न
Differentiate the following w.r.t.x: log[cos(x3 – 5)]
उत्तर
Let y = log[cos(x3 – 5)]
Differentiating w.r.t. x, we get,
`"dy"/"dx" = "d"/"dx"{log[cos(x^3 - 5)]}`
= `(1)/(cos(x^3 - 5))."d"/"dx"[cos(x^3 - 5)]`
= `(1)/(cos(x^3 - 5)).[-sin(x^3 - 5)]."d"/"dx"(x^3 - 5)`
= –tan(x3 – 5) x (3x2 – 0)
= –3x2tan(x3 – 5).
APPEARS IN
संबंधित प्रश्न
Differentiate the following w.r.t.x:
`sqrt(e^((3x + 2) + 5)`
Differentiate the following w.r.t.x: `5^(sin^3x + 3)`
Differentiate the following w.r.t.x: `e^(3sin^2x - 2cos^2x)`
Differentiate the following w.r.t.x: `sinsqrt(sinsqrt(x)`
Differentiate the following w.r.t.x: `x/(sqrt(7 - 3x)`
Differentiate the following w.r.t.x: `(1 + sinx°)/(1 - sinx°)`
Differentiate the following w.r.t.x: log[tan3x.sin4x.(x2 + 7)7]
Differentiate the following w.r.t.x:
`(x^2 + 2)^4/(sqrt(x^2 + 5)`
Differentiate the following w.r.t. x : cosec–1 (e–x)
Differentiate the following w.r.t. x : `cot^-1[cot(e^(x^2))]`
Differentiate the following w.r.t. x : `"cosec"^-1[1/cos(5^x)]`
Differentiate the following w.r.t. x : `tan^-1((cos7x)/(1 + sin7x))`
Differentiate the following w.r.t.x:
tan–1 (cosec x + cot x)
Differentiate the following w.r.t. x : `cos^-1((e^x - e^(-x))/(e^x + e^(-x)))`
Differentiate the following w.r.t. x : `sin^-1 ((1 - 25x^2)/(1 + 25x^2))`
Differentiate the following w.r.t.x:
`cot^-1((1 + 35x^2)/(2x))`
Differentiate the following w.r.t. x :
`tan^(−1)[(2^(x + 2))/(1 − 3(4^x))]`
Differentiate the following w.r.t. x : `tan^-1((a + btanx)/(b - atanx))`
Differentiate the following w.r.t. x : `cot^-1((a^2 - 6x^2)/(5ax))`
Differentiate the following w.r.t. x :
`tan^-1((5 -x)/(6x^2 - 5x - 3))`
Differentiate the following w.r.t. x : `root(3)((4x - 1)/((2x + 3)(5 - 2x)^2)`
Differentiate the following w.r.t. x: `x^(tan^(-1)x`
Differentiate the following w.r.t. x :
etanx + (logx)tanx
Differentiate the following w.r.t. x : `10^(x^(x)) + x^(x(10)) + x^(10x)`
Differentiate y = `sqrt(x^2 + 5)` w.r. to x
If y = `"e"^(1 + logx)` then find `("d"y)/("d"x)`
Differentiate `cot^-1((cos x)/(1 + sinx))` w.r. to x
Differentiate `tan^-1((8x)/(1 - 15x^2))` w.r. to x
If y = `sin^-1[("a"cosx - "b"sinx)/sqrt("a"^2 + "b"^2)]`, then find `("d"y)/("d"x)`
If f(x) = 3x - 2 and g(x) = x2, then (fog)(x) = ________.
If y = `1 + x + x^2/(2!) + x^3/(3!) + x^4/(4!) + .....,` then `(d^2y)/(dx^2)` = ______
The volume of a spherical balloon is increasing at the rate of 10 cubic centimetre per minute. The rate of change of the surface of the balloon at the instant when its radius is 4 centimetres, is ______
Let f(x) be a polynomial function of the second degree. If f(1) = f(–1) and a1, a2, a3 are in AP, then f’(a1), f’(a2), f’(a3) are in ______.
Differentiate `tan^-1 (sqrt((3 - x)/(3 + x)))` w.r.t. x.
If y = log (sec x + tan x), find `dy/dx`.