मराठी

Discuss the Continuity of the F(X) at the Indicated Points: F(X) = | X − 1 | + | X + 1 | at X = −1, 1. - Mathematics

Advertisements
Advertisements

प्रश्न

Discuss the Continuity of the F(X) at the Indicated Points : F(X) = | X − 1 | + | X + 1 | at X = −1, 1.

बेरीज

उत्तर

 Given : \[f\left( x \right) = \left| x - 1 \right| + \left| x + 1 \right|\]

We have
(LHL at x = −1) =  \[\lim_{x \to - 1^-} f\left( x \right) = \lim_{h \to 0} f\left( - 1 - h \right)\]

\[= \lim_{h \to 0} \left[ \left| - 1 - h - 1 \right| + \left| - 1 - h + 1 \right| \right] = 2 + 0 = 2\]
(RHL at x = −1) =
\[\lim_{x \to - 1^+} f\left( x \right) = \lim_{h \to 0} f\left( - 1 + h \right)\]
\[= \lim_{h \to 0} \left[ \left| - 1 + h - 1 \right| + \left| - 1 + h + 1 \right| \right] = 2 + 0 = 2\]
Also,
\[f\left( - 1 \right) = \left| - 1 - 1 \right| + \left| - 1 + 1 \right| = \left| - 2 \right| = 2\]

Now,
(LHL at x = 1) = \[\lim_{x \to 1^-} f\left( x \right) = \lim_{h \to 0} f\left( 1 - h \right) = \lim_{h \to 0} \left( \left| 1 - h - 1 \right| + \left| 1 - h + 1 \right| \right) = 0 + 2 = 2\]

(RHL at x =1) =  \[\lim_{x \to 1^+} f\left( x \right) = \lim_{h \to 0} f\left( 1 + h \right) = \lim_{h \to 0} \left( \left| 1 + h - 1 \right| + \left| 1 + h + 1 \right| \right) = 0 + 2 = 2\]

Also,

\[f\left( 1 \right) = \left| 1 + 1 \right| + \left| 1 - 1 \right| = 2\]
∴ ​\[\lim_{x \to - 1^-} f\left( x \right) = \lim_{x \to - 1^+} f\left( x \right) = f\left( - 1 \right) and \lim_{x \to 1^-} f\left( x \right) = \lim_{x \to 1^+} f\left( x \right) = f\left( 1 \right)\]
Hence,
\[f\left( x \right)\]   is continuous at  \[x = - 1, 1\] .
 
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Continuity - Exercise 9.1 [पृष्ठ २१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 9 Continuity
Exercise 9.1 | Q 39.2 | पृष्ठ २१

व्हिडिओ ट्यूटोरियलVIEW ALL [4]

संबंधित प्रश्‍न

Discuss the continuity of the following functions. If the function have a removable discontinuity, redefine the function so as to remove the discontinuity

`f(x)=(4^x-e^x)/(6^x-1)`  for x ≠ 0

         `=log(2/3) ` for x=0


Find the values of p and q for which

f(x) = `{((1-sin^3x)/(3cos^2x),`

is continuous at x = π/2.


Prove that the function `f(x) = x^n` is continuous at x = n, where n is a positive integer.


Find all point of discontinuity of f, where f is defined by `f (x) = {(2x + 3, if x<=2),(2x - 3, if x > 2):}`


Find all points of discontinuity of f, where f is defined by `f(x) = {(|x|+3, if x<= -3),(-2x, if -3 < x < 3),(6x + 2, if x >= 3):}`


Find all points of discontinuity of f, where f is defined by `f (x) = {(x/|x|, if x<0),(-1, if x >= 0):}`


Using mathematical induction prove that  `d/(dx) (x^n) = nx^(n -1)` for all positive integers n.


Show that the function f(x) = `{(x^2, x<=1),(1/2, x>1):}` is continuous at x = 1 but not differentiable.


Prove that the function 

\[f\left( x \right) = \begin{cases}\frac{x}{\left| x \right| + 2 x^2}, & x \neq 0 \\ k , & x = 0\end{cases}\]  remains discontinuous at x = 0, regardless the choice of k.

For what value of λ is the function 
\[f\left( x \right) = \begin{cases}\lambda( x^2 - 2x), & \text{ if }  x \leq 0 \\ 4x + 1 , & \text{  if } x > 0\end{cases}\]continuous at x = 0? What about continuity at x = ± 1?


Find the points of discontinuity, if any, of the following functions: 

\[f\left( x \right) = \begin{cases}\left| x \right| + 3 , & \text{ if } x \leq - 3 \\ - 2x , & \text { if }  - 3 < x < 3 \\ 6x + 2 , & \text{ if }  x > 3\end{cases}\]

Find the points of discontinuity, if any, of the following functions: \[f\left( x \right) = \begin{cases}2x , & \text{ if }  & x < 0 \\ 0 , & \text{ if }  & 0 \leq x \leq 1 \\ 4x , & \text{ if }  & x > 1\end{cases}\]


In the following, determine the value of constant involved in the definition so that the given function is continuou: 

\[f\left( x \right) = \begin{cases}\frac{k \cos x}{\pi - 2x} , & x < \frac{\pi}{2} \\ 3 , & x = \frac{\pi}{2} \\ \frac{3 \tan 2x}{2x - \pi}, & x > \frac{\pi}{2}\end{cases}\]

If f(x) = `{{:("a"x + 1,  "if"  x ≥ 1),(x + 2,  "if"  x < 1):}` is continuous, then a should be equal to ______.


`lim_("x" -> pi/2)` [sinx] is equal to ____________.


The number of discontinuous functions y(x) on [-2, 2] satisfying x2 + y2 = 4 is ____________.


Let f (x) `= (1 - "tan x")/(4"x" - pi), "x" ne pi/4, "x" in (0, pi/2).` If f(x) is continuous in `(0, pi/2), "then f"(pi/4) =` ____________.


`lim_("x"-> 0) sqrt(1/2 (1 - "cos"  2"x"))/"x"` is equal to


The function `f(x) = (x^2 - 25)/(x + 5)` is continuous at x =


The function f defined by `f(x) = {{:(x, "if"  x ≤ 1),(5, "if"  x > 1):}` discontinuous at x equal to


Sin |x| is a continuous function for


If function f(x) = `{{:((asinx + btanx - 3x)/x^3,",", x ≠ 0),(0,",", x = 0):}` is continuous at x = 0 then (a2 + b2) is equal to ______.


If functions g and h are defined as

g(x) = `{{:(x^2 + 1, x∈Q),(px^2, x\cancel(∈)Q):}`

and h(x) = `{{:(px, x∈Q),(2x + q, x\cancel(∈)Q):}`

If (g + h)(x) is continuous at x = 1 and x = 3, then 3p + q is ______.


If f(x) = `{{:(cos ((π(sqrt(1 + x) - 1))/x)/x,",", x ≠ 0),(π/k,",", x = 0):}`

is continuous at x = 0, then k2 is equal to ______.


If f(x) = `{{:((log_(sin|x|) cos^2x)/(log_(sin|3x|) cos  x/2), |x| < π/3; x ≠ 0),(k, x = 0):}`, then value of k for which f(x) is continuous at x = 0 is ______.


If the function f defined as f(x) = `1/x - (k - 1)/(e^(2x) - 1)` x ≠ 0, is continuous at x = 0, then the ordered pair (k, f(0)) is equal to ______.


Find the value(s) of 'λ' if the function

f(x) = `{{:((sin^2 λx)/x^2",", if x ≠ 0  "is continuous at"  x = 0.),(1",", if x = 0):}`


Find the value of k for which the function f given as

f(x) =`{{:((1 - cosx)/(2x^2)",", if x ≠ 0),(       k",", if x = 0 ):}` 

is continuous at x = 0.


The graph of the function f is shown below.

Of the following options, at what values of x is the function f NOT differentiable?


Consider the graph `y = x^(1/3)`


Statement 1: The above graph is continuous at x = 0

Statement 2: The above graph is differentiable at x = 0

Which of the following is correct?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×