Advertisements
Advertisements
प्रश्न
Using matrices, solve the following system of linear equations :
x + 2y − 3z = −4
2x + 3y + 2z = 2
3x − 3y − 4z = 11
उत्तर
The system of equations can be written in the form AX = B, where
A `= [(1,2,-3),(2,3,2),(3,-3,-4)],` X`=[("x"),("y"),("z")]` and B =`[(-4),(2),(11)]`
|A| = 1 (-12+6) - 2 (-8 - 6) - 3 (-6 - 9) = 67 ≠ 0
Therefore, A is non singular and so its inverse exists.
A11 = -6, A12 = 14, A13 = -15
A21 = 17, A22 = 5, A23 = 9
A31 = 13, A32 = -8, A33 = -1
Therefore, `"A"^-1 = 1/67[(-6,17,13),(14,5,-8),(-15,9,-1)]`
So X = A-1 B `=1/67[(-6,17,13),(14,5,-8),(-15,9,-1)][(-4),(2),(11)]`
i.e. `[("x"),("y"),("z")]=1/67[(201),(-134),(67)]=[(3),(-2),(1)]`
Hence, x = 3, y = -2 and z = 1
APPEARS IN
संबंधित प्रश्न
Find values of x, if `|[2,3],[4,5]|=|[x,3],[2x,5]|`
Without expanding at any stage, find the value of:
`|(a,b,c),(a+2x,b+2y,c+2z),(x,y,z)|`
A matrix A of order 3 × 3 has determinant 5. What is the value of |3A|?
A matrix of order 3 × 3 has determinant 2. What is the value of |A (3I)|, where I is the identity matrix of order 3 × 3.
A matrix A of order 3 × 3 is such that |A| = 4. Find the value of |2 A|.
If A is a 3 × 3 matrix, \[\left| A \right| \neq 0\text{ and }\left| 3A \right| = k\left| A \right|\] then write the value of k.
If A is a 3 × 3 invertible matrix, then what will be the value of k if det(A–1) = (det A)k.
If A is a matrix of order 3 and |A| = 8, then |adj A| = __________ .
Solve the following system of linear equations using matrix method:
3x + y + z = 1
2x + 2z = 0
5x + y + 2z = 2
Without expanding, show that Δ = `|("cosec"^2theta, cot^2theta, 1),(cot^2theta, "cosec"^2theta, -1),(42, 40, 2)|` = 0
If Δ = `|(0, "b" - "a", "c" - "a"),("a" - "b", 0, "c" - "b"),("a" - "c", "b" - "c", 0)|`, then show that ∆ is equal to zero.
The value of the determinant ∆ = `|(sin^2 23^circ, sin^2 67^circ, cos180^circ),(-sin^2 67^circ, -sin^2 23^circ, cos^2 180^circ),(cos180^circ, sin^2 23^circ, sin^2 67^circ)|` = ______.
If a + b + c ≠ 0 and `|("a", "b","c"),("b", "c", "a"),("c", "a", "b")|` 0, then prove that a = b = c.
Prove tha `|("bc" - "a"^2, "ca" - "b"^2, "ab" - "c"^2),("ca" - "b"^2, "ab" - "c"^2, "bc" - "a"^2),("ab" - "c"^2, "bc" - "a"^2, "ca" - "b"^2)|` is divisible by a + b + c and find the quotient.
Let f(t) = `|(cos"t","t", 1),(2sin"t", "t", 2"t"),(sin"t", "t", "t")|`, then `lim_("t" - 0) ("f"("t"))/"t"^2` is equal to ______.
If f(x) = `|(0, x - "a", x - "b"),(x + "b", 0, x - "c"),(x + "b", x + "c", 0)|`, then ______.
If A = `[(2, lambda, -3),(0, 2, 5),(1, 1, 3)]`, then A–1 exists if ______.
If A is a matrix of order 3 × 3, then |3A| = ______.
If A is invertible matrix of order 3 × 3, then |A–1| ______.
If f(x) = `|((1 + x)^17, (1 + x)^19, (1 + x)^23),((1 + x)^23, (1 + x)^29, (1 + x)^34),((1 +x)^41, (1 +x)^43, (1 + x)^47)|` = A + Bx + Cx2 + ..., then A = ______.
If A and B are matrices of order 3 and |A| = 5, |B| = 3, then |3AB| = 27 × 5 × 3 = 405.
The maximum value of `|(1, 1, 1),(1, (1 + sintheta), 1),(1, 1, 1 + costheta)|` is `1/2`
If A = `[(1,0,0),(2,"cos x","sin x"),(3,"sin x", "-cos x")],` then det. A is equal to ____________.
If `Delta = abs((5,3,8),(2,0,1),(1,2,3)),` then write the minor of the element a23.