English

Using the Property of Determinants and Without Expanding, Prove That: |(B+C, Q+R, Y+Z),(C+A, R+P, Z +X),(A+B, P+Q, X + Y )| = 2|(A,P,X),(B,Q,Y),(C, R,Z)| - Mathematics

Advertisements
Advertisements

Question

Using the property of determinants and without expanding, prove that:

`|(b+c, q+r, y+z),(c+a, r+p, z +x),(a+b, p+q, x + y )| = 2|(a,p,x),(b,q,y),(c, r,z)|`

Solution

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Determinants - Exercise 4.2 [Page 119]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 4 Determinants
Exercise 4.2 | Q 5 | Page 119

RELATED QUESTIONS

Using the property of determinants and without expanding, prove that:

`|(2,7,65),(3,8,75),(5,9,86)| = 0`


By using properties of determinants, show that:

`|(0,a, -b),(-a,0, -c),(b, c,0)| = 0`


By using properties of determinants, show that:

`|(-a^2, ab, ac),(ba, -b^2, bc),(ca,cb, -c^2)| = 4a^2b^2c^2`


By using properties of determinants, show that:

`|(y+k,y, y),(y, y+k, y),(y, y, y+k)| = k^2(3y + k)`


Without expanding the determinant, prove that

`|(a, a^2,bc),(b,b^2, ca),(c, c^2,ab)| = |(1, a^2, a^3),(1, b^2, b^3),(1, c^2, c^3)|`


Evaluate `|(1,x,y),(1,x+y,y),(1,x,x+y)|`


Using properties of determinants, prove that:

`|(x, x^2, 1+px^3),(y, y^2, 1+py^3),(z, z^2, 1+pz^2)|` = (1 + pxyz) (x – y) (y – z) (z – x), where p is any scalar.


Using properties of determinants, prove that `|(x,x+y,x+2y),(x+2y, x,x+y),(x+y, x+2y, x)| = 9y^2(x + y)`


Using properties of determinants, prove that `|(1,1,1+3x),(1+3y, 1,1),(1,1+3z,1)| = 9(3xyz + xy +  yz+ zx)`


Solve for x : `|("a"+"x","a"-"x","a"-"x"),("a"-"x","a"+"x","a"-"x"),("a"-"x","a"-"x","a"+"x")| = 0`, using properties of determinants. 


Solve the following equation: `|(x + 2, x + 6, x - 1),(x + 6, x - 1,x + 2),(x - 1, x + 2, x + 6)|` =  0


Without expanding determinants, find the value of `|(2014, 2017, 1),(2020, 2023, 1),(2023, 2026, 1)|`


Find the value (s) of x, if `|(1, 2x, 4x),(1, 4, 16),(1, 1, 1)|` = 0


Without expanding the determinants, show that `|(0, "a", "b"),(-"a", 0, "c"),(-"b", -"c", 0)|` = 0


Without expanding evaluate the following determinant:

`|(2, 3, 4),(5, 6, 8),(6x, 9x, 12x)|`


Using properties of determinant show that

`|("a" + "b", "a", "b"),("a", "a" + "c", "c"),("b", "c", "b" + "c")|` = 4abc


If  `|(4 + x, 4 - x, 4 - x),(4 - x,4 + x,4 - x),(4 - x,4 - x, 4 + x)|` = 0, then find the values of x.


Select the correct option from the given alternatives:

Which of the following is correct


Answer the following question:

Without expanding determinant show that

`|("b" + "c", "bc", "b"^2"c"^2),("c" + "a", "ca", "c"^2"a"^2),("a" + "b", "ab", "a"^2"b"^2)|` = 0


Answer the following question:

Without expanding determinant show that

`|(0, "a", "b"),(-"a", 0, "c"),(-"b", -"c", 0)|` = 0


Evaluate: `|("a" + x, y, z),(x, "a" + y, z),(x, y, "a" + z)|`


Find the value of θ satisfying `[(1, 1, sin3theta),(-4, 3, cos2theta),(7, -7, -2)]` = 0


The number of distinct real roots of `|(sinx, cosx, cosx),(cosx, sinx, cosx),(cosx, cosx, sinx)|` = 0 in the interval `pi/4  x ≤ pi/4` is ______.


If x, y, z ∈ R, then the value of determinant `|((2x^2 + 2^(-x))^2, (2^x - 2^(-x))^2, 1),((3^x + 3^(-x))^2, (3^x -3^(-x))^2, 1),((4^x + 4^(-x))^2, (4^x - 4^(-x))^2, 1)|` is equal to ______.


Let Δ = `|("a", "p", x),("b", "q", y),("c", "r", z)|` = 16, then Δ1 = `|("p" + x, "a" + x, "a" + "p"),("q" + y, "b" + y, "b" + "q"),("r" + z, "c" + z, "c" + "r")|` = 32.


The determinant `abs (("a","bc","a"("b + c")),("b","ac","b"("c + a")),("c","ab","c"("a + b"))) =` ____________


If `abs ((2"x",5),(8, "x")) = abs ((6,-2),(7,3)),`  then the value of x is ____________.


In a third order matrix B, bij denotes the element in the ith row and jth column. If

bij = 0 for i = j

= 1 for > j

= – 1 for i < j

Then the matrix is


`f : {1, 2, 3) -> {4, 5}` is not a function, if it is defined by which of the following?


Let a, b, c be such that b(a + c) ≠ 0 if

`|(a, a + 1, a - 1),(-b, b + 1, b - 1),(c, c - 1, c + 1)| + |(a + 1, b + 1, c - 1),(a - 1, b - 1, c + 1),((-1)^(n + 2)a, (-1)^(n + 1)b, (-1)^n c)|` = 0, then the value of n is ______.


Without expanding determinants find the value of `|(10,57,107), (12, 64, 124), (15, 78, 153)|`


Without expanding evaluate the following determinant.

`|(1, a, a + c),(1, b, c + a),(1, c, a + b)|`


Without expanding determinants find the value of `|(10,57,107),(12,64,124),(15,78,153)|`


By using properties of determinant prove that `|(x + y, y+z, z +x),(z,x,y),(1,1,1)| =0`


By using properties of determinant prove that `|(x+y,y+z,z+x),(z,x,y),(1,1,1)|` = 0.


Without expanding evaluate the following determinant.

`|(1, a, b+c), (1, b, c+a), (1, c, a+b)|`


Without expanding determinants, find the value of `|(10, 57, 107),(12, 64, 124),(15, 78, 153)|`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×