English

Without expanding determinants show that |1366143712|+4|233212176|=10|121317326| - Mathematics and Statistics

Advertisements
Advertisements

Question

Without expanding determinants show that

`|(1, 3, 6),(6, 1, 4),(3, 7, 12)| + 4|(2, 3, 3),(2, 1, 2),(1, 7, 6)| = 10|(1, 2, 1),(3, 1, 7),(3, 2, 6)|`

Sum

Solution

L.H.S. = `|(1, 3, 6),(6, 1, 4),(3, 7, 12)| + 4|(2, 3, 3),(2, 1, 2),(1, 7, 6)|`

By taking 2 common from C3 in the first determinant, we get,

L.H.S. = `2|(1, 3, 3),(6, 1, 2),(3, 7, 6)| + 4|(2, 3, 3),(2, 1, 2),(1, 7, 6)|`

= `|(2, 3, 3),(12, 1, 2),(6, 7, 6)| + |(8, 3, 3),(8, 1, 2),(4, 7, 6)|`

= `|(2 + 8, 3, 3),(12 + 8, 1, 2),(6 + 4, 7, 6)|`

as C2 and C3 are identical in the two determinants

= `|(10, 3, 3),(20, 1, 2),(10, 7, 6)|`

By interchanging rows and columns, we get,

L.H.S. = `|(10, 20, 10),(3, 1, 7),(3, 2, 6)|`

By taking 10 common from R1, we get,

L.H.S. = `10|(1, 2, 1),(3, 1, 7),(3, 2, 6)|`

= R.H.S.

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Determinants and Matrices - Exercise 4.2 [Page 68]

APPEARS IN

RELATED QUESTIONS

Using properties of determinants, prove that `|[2y,y-z-x,2y],[2z,2z,z-x-y],[x-y-z,2x,2x]|=(x+y+z)^3`


Using properties of determinants prove the following: `|[1,x,x^2],[x^2,1,x],[x,x^2,1]|=(1-x^3)^2`


Using properties of determinants, prove that

`|((x+y)^2,zx,zy),(zx,(z+y)^2,xy),(zy,xy,(z+x)^2)|=2xyz(x+y+z)^3`

 


 

If ` f(x)=|[a,-1,0],[ax,a,-1],[ax^2,ax,a]| ` , using properties of determinants find the value of f(2x) − f(x).

 

Using properties of determinants, prove that

`|[x+y,x,x],[5x+4y,4x,2x],[10x+8y,8x,3x]|=x^3`


By using properties of determinants, show that:

`|(a-b-c, 2a,2a),(2b, b-c-a,2b),(2c,2c, c-a-b)| = (a + b + c)^2`


Evaluate `|(1,x,y),(1,x+y,y),(1,x,x+y)|`


Using properties of determinants, prove that:

`|(alpha, alpha^2,beta+gamma),(beta, beta^2, gamma+alpha),(gamma, gamma^2, alpha+beta)|` =  (β – γ) (γ – α) (α – β) (α + β + γ)


Using properties of determinants, prove that

`|(sin alpha, cos alpha, cos(alpha+ delta)),(sin beta, cos beta, cos (beta + delta)),(sin gamma, cos gamma, cos (gamma+ delta))| = 0`


Using properties of determinants, prove that `|(1,1,1+3x),(1+3y, 1,1),(1,1+3z,1)| = 9(3xyz + xy +  yz+ zx)`


Without expanding evaluate the following determinant:

`|(1, "a", "b" + "c"),(1, "b", "c" + "a"),(1, "c", "a" + "b")|`


Using properties of determinants, show that `|("a" + "b", "a", "b"),("a", "a" + "c", "c"),("b", "c", "b" + "c")|` = 4abc.


Without expanding the determinant, find the value of `|(10, 57, 107),(12, 64, 124),(15, 78, 153)|`.


By using properties of determinants, prove that `|(x + y, y + z, z + x),(z, x, y),(1, 1, 1)|` = 0.


Without expanding the determinants, show that `|(0, "a", "b"),(-"a", 0, "c"),(-"b", -"c", 0)|` = 0


Without expanding evaluate the following determinant:

`|(2, 3, 4),(5, 6, 8),(6x, 9x, 12x)|`


Select the correct option from the given alternatives:

If x = –9 is a root of `|(x, 3, 7),(2, x, 2),(7, 6, x)|` = 0 has other two roots are


Select the correct option from the given alternatives:

If `|(6"i", -3"i", 1),(4, 3"i", -1),(20, 3, "i")|` = x + iy then


Select the correct option from the given alternatives:

Which of the following is correct


The number of distinct real roots of `|(sinx, cosx, cosx),(cosx, sinx, cosx),(cosx, cosx, sinx)|` = 0 in the interval `pi/4  x ≤ pi/4` is ______.


If the value of a third order determinant is 12, then the value of the determinant formed by replacing each element by its co-factor will be 144.


The value of the determinant `abs ((alpha, beta, gamma),(alpha^2, beta^2, gamma^2),(beta + gamma, gamma + alpha, alpha + beta)) =` ____________.


The A.M., H.M. and G.M. between two numbers are `144/15`, 15 and 12, but not necessarily in this order then, H.M., G.M. and A.M. respectively are


In a triangle the length of the two larger sides are 10 and 9, respectively. If the angles are in A.P., then the length of the third side can be ______.


If f(α) = `[(cosα, -sinα, 0),(sinα, cosα, 0),(0, 0, 1)]`, prove that f(α) . f(– β) = f(α – β).


Without expanding evaluate the following determinant.

`|(1, a, a + c),(1, b, c + a),(1, c, a + b)|`


Without expanding determinants find the value of `|(10,57,107),(12,64,124),(15,78,153)|`


Without expanding determinants find the value of `|(10, 57, 107),(12, 64, 124),(15, 78, 153)|`


Without expanding determinants find the value of `|(10,57,107),(12,64,124),(15,78,153)|`


By using properties of determinant prove that `|(x+y,y+z,z+x),(z,x,y),(1,1,1)|` = 0.


Without expanding determinants, find the value of  `|(10, 57, 107), (12, 64, 124), (15, 78, 153)|`


Without expanding determinant find the value of `|(10,57,107),(12,64,124),(15,78,153)|`


By using properties of determinants, prove that 

`|(x+y, y+z, z+x),(z, x, y),(1, 1, 1)|` = 0 


By using properties of determinant prove that `|(x+y,y+z,z+x),(z,x,y),(1,1,1)|` = 0


Without expanding evaluate the following determinant.

`|(1,"a","b+c"),(1,"b","c+a"),(1,"c","a+b")|`


Without expanding the determinant, find the value of `|(10,57,107),(12,64,124),(15,78,153)|`


Without expanding evaluate the following determinant.

`|(1, a, b+c),(1, b, c+a),(1, c, a+b)|`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×