Advertisements
Advertisements
प्रश्न
Using properties of determinants, prove the following :
उत्तर
Let \[∆ = \begin{vmatrix}1 & a & a^2 \\ a^2 & 1 & a \\ a & a^2 & 1\end{vmatrix}\]
Applying R1 → R1 + R2 + R3, we get
\[∆ = \begin{vmatrix}1 + a + a^2 & 1 + a + a^2 & 1 + a + a^2 \\ a^2 & 1 & a \\ a & a^2 & 1\end{vmatrix}\]
\[ = \left( 1 + a + a^2 \right) \begin{vmatrix}1 & 1 & 1 \\ a^2 & 1 & a \\ a & a^2 & 1\end{vmatrix}\]
Applying C2 → C2 − C1 and C3 → C3 − C1, we get
\[∆ = \left( 1 + a + a^2 \right) \begin{vmatrix}1 & 0 & 0 \\ a^2 & 1 - a^2 & a - a^2 \\ a & a^2 - a & 1 - a\end{vmatrix}\]
\[ = \left( 1 + a + a^2 \right) \left( 1 - a \right) \left( 1 - a \right) \begin{vmatrix}1 & 0 & 0 \\ a^2 & 1 + a & a \\ a & - a & 1\end{vmatrix}\]
\[ = \left( 1 - a^3 \right) \left( 1 - a \right) \begin{vmatrix}1 & 0 & 0 \\ a^2 & 1 + a & a \\ a & - a & 1\end{vmatrix}\]
Expanding along R1, we get
∆ = (1 − a3) (1 − a) {[(1 + a) + a2] − 0 + 0}
= (1 − a3) (1 − a) (1 + a + a2)
= (1 − a3) (1 − a3)
= (1 − a3)2
APPEARS IN
संबंधित प्रश्न
Using properties of determinants, prove that `|[2y,y-z-x,2y],[2z,2z,z-x-y],[x-y-z,2x,2x]|=(x+y+z)^3`
Using the properties of determinants, prove the following:
`|[1,x,x+1],[2x,x(x-1),x(x+1)],[3x(1-x),x(x-1)(x-2),x(x+1)(x-1)]|=6x^2(1-x^2)`
Using properties of determinants, prove that
`|((x+y)^2,zx,zy),(zx,(z+y)^2,xy),(zy,xy,(z+x)^2)|=2xyz(x+y+z)^3`
By using properties of determinants, show that:
`|(-a^2, ab, ac),(ba, -b^2, bc),(ca,cb, -c^2)| = 4a^2b^2c^2`
By using properties of determinants, show that:
`|(x,x^2,yz),(y,y^2,zx),(z,z^2,xy)| = (x-y)(y-z)(z-x)(xy+yz+zx)`
By using properties of determinants, show that:
`|(a^2+1, ab, ac),(ab, b^2+1, bc),(ca, cb, c^2+1)| = 1+a^2+b^2+c^2`
Using properties of determinants, prove that `|(x,x+y,x+2y),(x+2y, x,x+y),(x+y, x+2y, x)| = 9y^2(x + y)`
Using properties of determinants, prove that
`|[b+c , a ,a ] ,[ b , a+c, b ] ,[c , c, a+b ]|` = 4abc
Without expanding determinants, find the value of `|(2014, 2017, 1),(2020, 2023, 1),(2023, 2026, 1)|`
Without expanding determinants, prove that `|(1, yz, y + z),(1, zx, z + x),(1, xy, x + y)| = |(1, x, x^2),(1, y, y^2),(1, z, z^2)|`.
Find the value (s) of x, if `|(1, 4, 20),(1, -2, -5),(1, 2x, 5x^2)|` = 0
Without expanding the determinants, show that `|(l, "m", "n"),("e", "d", "f"),("u", "v", "w")| = |("n", "f", "w"),(l, "e", "u"),("m", "d", "v")|`
Without expanding evaluate the following determinant:
`|(2, 7, 65),(3, 8, 75),(5, 9, 86)|`
Select the correct option from the given alternatives:
If `|(6"i", -3"i", 1),(4, 3"i", -1),(20, 3, "i")|` = x + iy then
Answer the following question:
Evaluate `|(101, 102, 103),(106, 107, 108),(1, 2, 3)|` by using properties
Answer the following question:
Without expanding determinant show that
`|(l, "m", "n"),("e", "d", "f"),("u", "v", "w")| = |("n", "f", "w"),(l, "e", "u"),("m", "d", "v")|`
The value of `|(1, 1, 1),(""^"n""C"_1, ""^("n" + 2)"C"_1, ""^("n" + 4)"C"_1),(""^"n""C"_2, ""^("n" + 2)"C"_2, ""^("n" + 4)"C"_2)|` is 8.
The number of distinct real roots of `|(sinx, cosx, cosx),(cosx, sinx, cosx),(cosx, cosx, sinx)|` = 0 in the interval `pi/4 x ≤ pi/4` is ______.
If A, B and C are angles of a triangle, then the determinant `|(-1, cos"C", cos"B"),(cos"C", -1, cos"A"),(cos"B", cos"A", -1)|` is equal to ______.
The determinant `|(sin"A", cos"A", sin"A" + cos"B"),(sin"B", cos"A", sin"B" + cos"B"),(sin"C", cos"A", sin"C" + cos"B")|` is equal to zero.
If the determinant `|(x + "a", "p" + "u", "l" + "f"),("y" + "b", "q" + "v", "m" + "g"),("z" + "c", "r" + "w", "n" + "h")|` splits into exactly K determinants of order 3, each element of which contains only one term, then the value of K is 8.
The determinant `abs (("a","bc","a"("b + c")),("b","ac","b"("c + a")),("c","ab","c"("a + b"))) =` ____________
If the ratio of the H.M. and GM. between two numbers a and bis 4 : 5, then a: b is
If `|(α, 3, 4),(1, 2, 1),(1, 4, 1)|` = 0, then the value of α is ______.
Without expanding determinants find the value of `|(10,57,107), (12, 64, 124), (15, 78, 153)|`
Without expanding determinants find the value of `|(10,57,107),(12,64,124),(15,78,153)|`
Without expanding determinants find the value of `|(10, 57, 107),(12, 64, 124),(15, 78, 153)|`
Evaluate the following determinant without expanding:
`|(5, 5, 5),(a, b, c),(b + c, c + a, a + b)|`
Without expanding determinant find the value of `|(10,57,107),(12,64,124),(15,78,153)|`
The value of the determinant of a matrix A of order 3 is 3. If C is the matrix of cofactors of the matrix A, then what is the value of determinant of C2?