हिंदी

Using Properties of Determinants, Prove That Matrix (Asquare2 + 2a,2a + 1,1,2a+1,A+2, 3, 3, 1 - Mathematics

Advertisements
Advertisements

प्रश्न

Using properties of determinants, prove that 

`|(a^2 + 2a,2a + 1,1),(2a+1,a+2, 1),(3, 3, 1)| = (a - 1)^3`

योग

उत्तर १

L.H.S = `|(a^2 + 2a,2a + 1,1),(2a+1,a+2, 1),(3, 3, 1)|`

`R_1 -> R_1 - R_2`

= `|(a^2-1, a-1,0),(2a+1,a+2,1),(3,3,1)|`

= `(a-1) |(a+1,1,0),(2a+1,a+2,1),(3,3,1)|`

`R_2 -> R_2 - R_2`

= `(a-1) |(a+1,1,0),(2a-2, a-1,0),(3,3,1)|`

= `(a-1)^2 |(a+1,1,0),(2,1,0),(3,3,1)|`

expanding along C3

= `(a-1)^2 (a+1-2) = (a-1)^2 (a-1)`

= `(a-1)^3 = R.H.S.`

shaalaa.com

उत्तर २

`"L.H.S." = |(a^2+2a,2a+1,1),(2a+1,a+2,1),(3,3,1)|`

`R_2 ->R_2 - R_1, R_3-> R_3 -R_1`

= `|(a^2+2a,2a+1,1),(1-a^2,-a+1,0),(3-a^2-2a,3-2a-1,0)|`

= `|(a^2+2a,2a+1,1),(1-a^2,1-a,0),(3-a^2-2a, 2-2a,0)|`

Expanding along C3
= 1 [(1 - a2) (2 - 2a) - (1 - a) (3 - a2 - 2a)]
= 2 (1 -  a) (1 -  a) (1 + a) - (1 - a) (3 - a2 - 2a)
= (1 - a) [2 (1 - a2) - 3 + a2 + 2a]
= (1 - a) (2a - a2 - 1)
= (a - 1)3
= RHS

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2016-2017 (March) All India Set 1

संबंधित प्रश्न

Using properties of determinants, show that ΔABC is isosceles if:`|[1,1,1],[1+cosA,1+cosB,1+cosC],[cos^2A+cosA,cos^B+cosB,cos^2C+cosC]|=0​`


Using the property of determinants and without expanding, prove that:

`|(1, bc, a(b+c)),(1, ca, b(c+a)),(1, ab, c(a+b))| = 0`


Using the property of determinants and without expanding, prove that:

`|(b+c, q+r, y+z),(c+a, r+p, z +x),(a+b, p+q, x + y )| = 2|(a,p,x),(b,q,y),(c, r,z)|`


By using properties of determinants, show that:

`|(0,a, -b),(-a,0, -c),(b, c,0)| = 0`


By using properties of determinants, show that:

`|(-a^2, ab, ac),(ba, -b^2, bc),(ca,cb, -c^2)| = 4a^2b^2c^2`


By using properties of determinants, show that:

`|(x,x^2,yz),(y,y^2,zx),(z,z^2,xy)| = (x-y)(y-z)(z-x)(xy+yz+zx)`


Evaluate `|(1,x,y),(1,x+y,y),(1,x,x+y)|`


Using properties of determinants, prove that \[\begin{vmatrix}a + x & y & z \\ x & a + y & z \\ x & y & a + z\end{vmatrix} = a^2 \left( a + x + y + z \right)\] .


Without expanding determinants, prove that `|("a"_1, "b"_1, "c"_1),("a"_2, "b"_2, "c"_2),("a"_3, "b"_3, "c"_3)| = |("b"_1, "c"_1, "a"_1),("b"_2, "c"_2, "a"_2),("b"_3, "c"_3, "a"_3)| = |("c"_1, "a"_1, "b"_1),("c"_2, "a"_2, "b"_2),("c"_3, "a"_3, "b"_3)|` 


Without expanding the determinants, show that `|(x"a", y"b", z"c"),("a"^2, "b"^2, "c"^2),(1, 1, 1)| = |(x, y, z),("a", "b", "c"),("bc", "ca", "ab")|`


Answer the following question:

Evaluate `|(2, 3, 5),(400, 600, 1000),(48, 47, 18)|` by using properties


Answer the following question:

Without expanding determinant show that

`|(x"a", y"b", z"c"),("a"^2, "b"^2, "c"^2),(1, 1, 1)| = |(x, y, z),("a", "b", "c"),("bc", "ca", "ab")|`


Answer the following question:

Without expanding determinant show that

`|(l, "m", "n"),("e", "d", "f"),("u", "v", "w")| = |("n", "f", "w"),(l, "e", "u"),("m", "d", "v")|`


Evaluate: `|(0, xy^2, xz^2),(x^2y, 0, yz^2),(x^2z, zy^2, 0)|`


Evaluate: `|(3x, -x + y, -x + z),(x - y, 3y, z - y),(x - z, y - z, 3z)|`


If A + B + C = 0, then prove that `|(1, cos"c", cos"B"),(cos"C", 1, cos"A"),(cos"B", cos"A", 1)|` = 0


If the value of a third order determinant is 12, then the value of the determinant formed by replacing each element by its co-factor will be 144.


`abs(("x", -7),("x", 5"x" + 1))`


The value of the determinant `abs ((alpha, beta, gamma),(alpha^2, beta^2, gamma^2),(beta + gamma, gamma + alpha, alpha + beta)) =` ____________.


`f : {1, 2, 3) -> {4, 5}` is not a function, if it is defined by which of the following?


A number consists of two digits and the digit in the ten's place exceeds that in the unit's place by 5. If 5 times the sum of the digits be subtracted from the number, the digits of the number are reversed. Then the sum of digits of the number is:


If A, B and C are the angles of a triangle ABC, then `|(sin2"A", sin"C", sin"B"),(sin"C", sin2"B", sin"A"),(sin"B", sin"A", sin2"C")|` = ______.


Without expanding determinant find the value of `|(10,57,107),(12,64,124),(15,78,153)|`


Without expanding determinants find the value of `|(10,57,107), (12, 64, 124), (15, 78, 153)|`


Without expanding determinants find the value of  `|(10,57,107),(12,64,124),(15,78,153)|`


By using properties of determinant prove that `|(x+y, y+z,z+x),(z,x,y),(1,1,1)|=0`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×