Advertisements
Advertisements
प्रश्न
Prepare truth table for (p ˄ q) ˅ ~ r
(p ∧ q) ∨ ~ r
उत्तर
(p ∧ q) ∨ ~ r
p | q | r | ~r | p ∧ q | (p ∧ q) ∨ ~ r |
T | T | T | F | T | T |
T | T | F | T | T | T |
T | F | T | F | F | F |
T | F | F | T | F | T |
F | T | T | F | F | F |
F | T | F | T | F | T |
F | F | T | F | F | F |
F | F | F | T | F | T |
APPEARS IN
संबंधित प्रश्न
Examine whether the following logical statement pattern is a tautology, contradiction, or contingency.
[(p→q) ∧ q]→p
Write the converse and contrapositive of the statement -
“If two triangles are congruent, then their areas are equal.”
Write the dual of the following statements: (p ∨ q) ∧ T
Write the dual of the following statements:
Madhuri has curly hair and brown eyes.
Write converse and inverse of the following statement:
“If a man is a bachelor then he is unhappy.”
If p and q are true statements and r and s are false statements, find the truth value of the following :
( p ∧ ∼ r ) ∧ ( ∼ q ∧ s )
Using truth table, examine whether the following statement pattern is tautology, contradiction or contingency: p ∨ [∼(p ∧ q)]
Express the following statement in symbolic form and write its truth value.
"If 4 is an odd number, then 6 is divisible by 3."
Show that the following statement pattern in contingency :
(~p v q) → [p ∧ (q v ~ q)]
State if the following sentence is a statement. In case of a statement, write down the truth value :
Every quadratic equation has only real roots.
Write converse and inverse of the following statement :
"If Ravi is good in logic then Ravi is good in Mathematics."
By constructing the truth table, determine whether the following statement pattern ls a tautology , contradiction or . contingency. (p → q) ∧ (p ∧ ~ q ).
Using the truth table prove the following logical equivalence.
∼ (p ∨ q) ∨ (∼ p ∧ q) ≡ ∼ p
Using the truth table prove the following logical equivalence.
p ↔ q ≡ ∼ [(p ∨ q) ∧ ∼ (p ∧ q)]
Using the truth table prove the following logical equivalence.
p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)
Examine whether the following statement pattern is a tautology or a contradiction or a contingency.
(p ∧ q) → (q ∨ p)
Examine whether the following statement pattern is a tautology or a contradiction or a contingency.
(p → q) ↔ (∼ p ∨ q)
Examine whether the following statement pattern is a tautology or a contradiction or a contingency.
[(p → q) ∧ ∼ q] → ∼ p
Examine whether the following statement pattern is a tautology or a contradiction or a contingency.
(p ↔ q) ∧ (p → ∼ q)
Examine whether the following statement pattern is a tautology or a contradiction or a contingency.
(p ∧ ∼ q) ↔ (p → q)
Examine whether the following statement pattern is a tautology or a contradiction or a contingency.
[p → (∼ q ∨ r)] ↔ ∼ [p → (q → r)]
(p ∧ q) → r is logically equivalent to ________.
Inverse of statement pattern (p ∨ q) → (p ∧ q) is ________ .
Determine whether the following statement pattern is a tautology, contradiction, or contingency:
[(p ∨ q) ∧ ∼p] ∧ ∼q
Determine whether the following statement pattern is a tautology, contradiction or contingency:
[p → (q → r)] ↔ [(p ∧ q) → r]
Determine whether the following statement pattern is a tautology, contradiction or contingency:
[(p ∧ (p → q)] → q
Determine whether the following statement pattern is a tautology, contradiction or contingency:
(p ∧ q) ∨ (∼p ∧ q) ∨ (p ∨ ∼q) ∨ (∼p ∧ ∼q)
Determine whether the following statement pattern is a tautology, contradiction or contingency:
[(p ∨ ∼q) ∨ (∼p ∧ q)] ∧ r
Prepare truth tables for the following statement pattern.
(~ p ∨ q) ∧ (~ p ∨ ~ q)
Prepare truth tables for the following statement pattern.
(p ∧ r) → (p ∨ ~ q)
Examine whether the following statement pattern is a tautology, a contradiction or a contingency.
q ∨ [~ (p ∧ q)]
Examine whether the following statement pattern is a tautology, a contradiction or a contingency.
(p ∧ ~ q) → (~ p ∧ ~ q)
Examine whether the following statement pattern is a tautology, a contradiction or a contingency.
~ p → (p → ~ q)
Prove that the following statement pattern is a tautology.
(p → q) ↔ (~ q → ~ p)
Prove that the following statement pattern is a tautology.
(~ p ∨ ~ q) ↔ ~ (p ∧ q)
Prove that the following statement pattern is a contradiction.
(p ∨ q) ∧ (~p ∧ ~q)
If p is any statement then (p ∨ ∼p) is a ______.
Prove that the following statement pattern is a contradiction.
(p ∧ q) ∧ (~p ∨ ~q)
Prove that the following statement pattern is a contradiction.
(p → q) ∧ (p ∧ ~ q)
Fill in the blanks :
Inverse of statement pattern p ↔ q is given by –––––––––.
Show that the following statement pattern is contingency.
(p∧~q) → (~p∧~q)
Show that the following statement pattern is contingency.
p ∧ [(p → ~ q) → q]
Show that the following statement pattern is contingency.
(p → q) ∧ (p → r)
Using the truth table, verify.
p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)
Using the truth table, verify
~(p → ~q) ≡ p ∧ ~ (~ q) ≡ p ∧ q
Using the truth table, verify
~(p ∨ q) ∨ (~ p ∧ q) ≡ ~ p
Prove that the following pair of statement pattern is equivalent.
p → q and ~ q → ~ p and ~ p ∨ q
Write the dual of the following:
(p ∨ q) ∨ r
Write the dual of the following:
~(p ∨ q) ∧ [p ∨ ~ (q ∧ ~ r)]
Write the dual statement of the following compound statement.
13 is prime number and India is a democratic country.
Write the dual statement of the following compound statement.
Karina is very good or everybody likes her.
Write the negation of the following statement.
∀ n ∈ N, n + 1 > 0
Write the negation of the following statement.
∃ n ∈ N, (n2 + 2) is odd number.
Write the negation of the following statement.
Some continuous functions are differentiable.
With proper justification, state the negation of the following.
(p ↔ q) v (~ q → ~ r)
Construct the truth table for the following statement pattern.
(p ∧ ~ q) ↔ (q → p)
Construct the truth table for the following statement pattern.
(p ∧ r) → (p ∨ ~q)
Construct the truth table for the following statement pattern.
(p ∨ r) → ~(q ∧ r)
What is tautology? What is contradiction?
Show that the negation of a tautology is a contradiction and the negation of a contradiction is a tautology.
Determine whether the following statement pattern is a tautology, contradiction, or contingency.
[(~p ∧ q) ∧ (q ∧ r)] ∨ (~q)
Determine whether the following statement pattern is a tautology, contradiction, or contingency.
[~(p ∨ q) → p] ↔ [(~p) ∧ (~q)]
Using the truth table, prove the following logical equivalence.
[~(p ∨ q) ∨ (p ∨ q)] ∧ r ≡ r
Using the truth table, prove the following logical equivalence.
p ∧ (~p ∨ q) ≡ p ∧ q
Using the truth table, prove the following logical equivalence.
~p ∧ q ≡ [(p ∨ q)] ∧ ~p
Write the converse, inverse, contrapositive of the following statement.
If 2 + 5 = 10, then 4 + 10 = 20.
Write the converse, inverse, contrapositive of the following statement.
If a man is bachelor, then he is happy.
Write the converse, inverse, contrapositive of the following statement.
If I do not work hard, then I do not prosper.
State the dual of the following statement by applying the principle of duality.
(p ∧ ~q) ∨ (~ p ∧ q) ≡ (p ∨ q) ∧ ~(p ∧ q)
State the dual of the following statement by applying the principle of duality.
p ∨ (q ∨ r) ≡ ~[(p ∧ q) ∨ (r ∨ s)]
Write the dual of the following.
(~p ∧ q) ∨ (p ∧ ~q) ∨ (~p ∧ ~q)
Write the dual of the following.
p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (q ∨ r)
Write the dual of the following.
~(p ∨ q) ≡ ~p ∧ ~q
The false statement in the following is ______.
Write the converse and contrapositive of the following statements.
“If a function is differentiable then it is continuous”
Write the dual of the following
(p ˄ ∼q) ˅ (∼p ˄ q) ≡ (p ˅ q) ˄ ∼(p ˄ q)
The contrapositive of p → ~ q is ______
Write the dual of the following.
13 is prime number and India is a democratic country
Complete the truth table.
p | q | r | q → r | r → p | (q → r) ˅ (r → p) |
T | T | T | T | `square` | T |
T | T | F | F | `square` | `square` |
T | F | T | T | `square` | T |
T | F | F | T | `square` | `square` |
F | T | T | `square` | F | T |
F | T | F | `square` | T | `square` |
F | F | T | `square` | F | T |
F | F | F | `square` | T | `square` |
The given statement pattern is a `square`
If p → (∼p v q) is false, then the truth values of p and q are respectively
Which of the following is not equivalent to p → q.
Which of the following is not true for any two statements p and q?
Using truth table verify that:
(p ∧ q)∨ ∼ q ≡ p∨ ∼ q
Write the negation of the following statement:
(p `rightarrow` q) ∨ (p `rightarrow` r)
Show that the following statement pattern is a contingency:
(p→q)∧(p→r)
In the triangle PQR, `bar(PQ) = 2bara and bar(QR)` = `2 bar(b)` . The mid-point of PR is M. Find following vectors in terms of `bar(a) and bar(b)` .
- `bar(PR)`
- `bar(PM)`
- `bar(QM)`
If p, q are true statements and r, s are false statements, then find the truth value of ∼ [(p ∧ ∼ r) ∨ (∼ q ∨ s)].