मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Write the negation of the following statement. Some continuous functions are differentiable. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Write the negation of the following statement.

Some continuous functions are differentiable.

एका वाक्यात उत्तर

उत्तर

All continuous functions are not differentiable.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Mathematical Logic - Exercise 1.8 [पृष्ठ २१]

संबंधित प्रश्‍न

Prove that the following statement pattern is equivalent :

(p ∨ q) →  r and (p → r) ∧ (q → r)


Prove that the following statement pattern is a tautology : ( q → p ) v ( p → q )


If   p : It is raining
     q : It is humid

Write the following statements in symbolic form:

(a) It is raining or humid.
(b) If it is raining then it is humid.
(c) It is raining but not humid. 


Express the following statement in symbolic form and write its truth value.
"If 4 is an odd number, then 6 is divisible by 3."


Show that the following statement pattern in contingency : 

(~p v q) → [p ∧ (q v ~ q)] 


Write the negation of the Following Statement :
∀ y ∈  N, y2 + 3 ≤ 7


State if the following sentence is a statement. In case of a statement, write down the truth value :
Every quadratic equation has only real roots.


By constructing the truth table, determine whether the following statement pattern ls a tautology , contradiction or . contingency.  (p →  q) ∧  (p ∧ ~ q ).


Examine whether the following statement (p ∧ q) ∨ (∼p ∨ ∼q) is a tautology or contradiction or neither of them.


Using the truth table prove the following logical equivalence.

p ↔ q ≡ ∼ [(p ∨ q) ∧ ∼ (p ∧ q)]


Using the truth table prove the following logical equivalence.

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)


Using the truth table prove the following logical equivalence.

[∼ (p ∨ q) ∨ (p ∨ q)] ∧ r ≡ r


Using the truth table proves the following logical equivalence.

∼ (p ↔ q) ≡ (p ∧ ∼ q) ∨ (q ∧ ∼ p)


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

(p ∧ q) → (q ∨ p)


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

(p → q) ↔ (∼ p ∨ q)


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

(p ↔ q) ∧ (p → ∼ q)


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

(∼ p → q) ∧ (p ∧ r)


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

[p → (∼ q ∨ r)] ↔ ∼ [p → (q → r)]


Inverse of statement pattern (p ∨ q) → (p ∧ q) is ________ .


Examine whether the following statement pattern is a tautology, a contradiction or a contingency.

(~ q ∧ p) ∧ (p ∧ ~ p)


Examine whether the following statement pattern is a tautology, a contradiction or a contingency.

(p ∧ ~ q) → (~ p ∧ ~ q)


Examine whether the following statement pattern is a tautology, a contradiction or a contingency.

~ p → (p → ~ q)


Prove that the following statement pattern is a tautology.

(p → q) ↔ (~ q → ~ p)


Prove that the following statement pattern is a tautology.

(~p ∧ ~q ) → (p → q)


Fill in the blanks :

Inverse of statement pattern p ↔ q is given by –––––––––.


Prove that the following pair of statement pattern is equivalent.

p ↔ q and (p → q) ∧ (q → p)


Write the dual of the following:

~(p ∨ q) ∧ [p ∨ ~ (q ∧ ~ r)]


Write the dual of the following:

~(p ∧ q) ≡ ~ p ∨ ~ q


Write the dual statement of the following compound statement.

Karina is very good or everybody likes her.


Using the rules of negation, write the negation of the following:

(p → r) ∧ q


Write the converse, inverse, and contrapositive of the following statement.

"If it snows, then they do not drive the car"


With proper justification, state the negation of the following.

(p → q) ∨ (p → r)


With proper justification, state the negation of the following.

(p ↔ q) v (~ q → ~ r)


Construct the truth table for the following statement pattern.

(p ∧ ~ q) ↔ (q → p)


Construct the truth table for the following statement pattern.

(p ∨ ~q) → (r ∧ p)


What is tautology? What is contradiction?
Show that the negation of a tautology is a contradiction and the negation of a contradiction is a tautology.


Determine whether the following statement pattern is a tautology, contradiction, or contingency.

[(p ∧ q) ∨ (~p)] ∨ [p ∧ (~ q)]


Determine whether the following statement pattern is a tautology, contradiction, or contingency.

[(~p ∧ q) ∧ (q ∧ r)] ∨ (~q)


Determine whether the following statement pattern is a tautology, contradiction, or contingency.

[~(p ∧ q) → p] ↔ [(~p) ∧ (~q)]


Using the truth table, prove the following logical equivalence.

p ↔ q ≡ ~(p ∧ ~q) ∧ ~(q ∧ ~p)


Using the truth table, prove the following logical equivalence.

~p ∧ q ≡ [(p ∨ q)] ∧ ~p


Write the converse, inverse, contrapositive of the following statement.

If I do not work hard, then I do not prosper.


The false statement in the following is ______.


Write the converse and contrapositive of the following statements.

“If a function is differentiable then it is continuous”


Examine whether the statement pattern

[p → (~ q ˅ r)] ↔ ~[p → (q → r)] is a tautology, contradiction or contingency.


Complete the truth table.

p q r q → r r → p (q → r) ˅ (r → p)
T T T T `square` T
T T F F `square` `square`
T F T T `square` T
T F F T `square` `square`
F T T `square` F T
F T F `square` T `square`
F F T `square` F T
F F F `square` T `square`

The given statement pattern is a `square`


Which of the following is not true for any two statements p and q?


Show that the following statement pattern is a contingency:

(p→q)∧(p→r)


The converse of contrapositive of ∼p → q is ______.


In the triangle PQR, `bar(PQ) = 2bara and bar(QR)` = `2 bar(b)` . The mid-point of PR is M. Find following vectors in terms of `bar(a) and bar(b)` .

  1. `bar(PR)`  
  2. `bar(PM)`
  3. `bar(QM)`

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×