मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Using the truth table proves the following logical equivalence. ∼ (p ↔ q) ≡ (p ∧ ∼ q) ∨ (q ∧ ∼ p) - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Using the truth table proves the following logical equivalence.

∼ (p ↔ q) ≡ (p ∧ ∼ q) ∨ (q ∧ ∼ p)

तक्ता

उत्तर

1 2 3 4 5 6 7 8 9
p q ∼ p ∼ q p ↔ q ∼ (p ↔ q) p ∧ ∼ q q ∧ ∼ p (p ∧ ∼ q) ∨ (q ∧ ∼ p)
T T F F T F F F F
T F F T F T T F T
F T T F F T F T T
F F T T T F F F F

The entries in columns 6 and 9 are identical.
∴ ∼ (p ↔ q) ≡ (p ∧ ∼ q) ∨ (q ∧ ∼ p)

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Mathematical Logic - Exercise 1.2 [पृष्ठ १३]

APPEARS IN

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Examine whether the following logical statement pattern is a tautology, contradiction, or contingency.

[(p→q) ∧ q]→p


Express the following statement in symbolic form and write its truth value.

"If 4 is an odd number, then 6 is divisible by 3 "


Write the dual of the following statements:

Madhuri has curly hair and brown eyes.


Write converse and inverse of the following statement: 
“If a man is a bachelor then he is unhappy.” 


Prove that the following statement pattern is a tautology : ( q → p ) v ( p → q )


If   p : It is raining
     q : It is humid

Write the following statements in symbolic form:

(a) It is raining or humid.
(b) If it is raining then it is humid.
(c) It is raining but not humid. 


Using truth table, examine whether the following statement pattern is tautology, contradiction or contingency: p ∨ [∼(p ∧ q)]


Express the following statement in symbolic form and write its truth value.
"If 4 is an odd number, then 6 is divisible by 3."


Use the quantifiers to convert the following open sentence defined on N into true statement:
x2 ≥ 1


Prove that the following statement pattern is equivalent:
(p v q) → r and (p → r) ∧ (q → r)


State if the following sentence is a statement. In case of a statement, write down the truth value :
Every quadratic equation has only real roots.


State if the following sentence is a statement. In case of a statement, write down the truth value :
√-4 is a rational number.


Write converse and inverse of the following statement :
"If Ravi is good in logic then Ravi is good in Mathematics."


By constructing the truth table, determine whether the following statement pattern ls a tautology , contradiction or . contingency.  (p →  q) ∧  (p ∧ ~ q ).


Using the truth table prove the following logical equivalence.

p → (q → p) ≡ ∼ p → (p → q)


Using the truth table prove the following logical equivalence.

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)


Using the truth table prove the following logical equivalence.

p → (q ∧ r) ≡ (p ∧ q) (p → r)


Using the truth table prove the following logical equivalence.

[∼ (p ∨ q) ∨ (p ∨ q)] ∧ r ≡ r


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

(p ∧ q) → (q ∨ p)


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

(p → q) ↔ (∼ p ∨ q)


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

∼ (∼ q ∧ p) ∧ q


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

(p ∧ ∼ q) ↔ (p → q)


Determine whether the following statement pattern is a tautology, contradiction or contingency:

[p → (q → r)] ↔ [(p ∧ q) → r]


Determine whether the following statement pattern is a tautology, contradiction or contingency:

(p → q) ∨ (q → p)


Prepare truth table for (p ˄ q) ˅ ~ r

(p ∧ q) ∨ ~ r


Examine whether the following statement pattern is a tautology, a contradiction or a contingency.

(p ∧ ~ q) → (~ p ∧ ~ q)


Prove that the following statement pattern is a contradiction.

(p ∧ q) ∧ (~p ∨ ~q)


Fill in the blanks :

Inverse of statement pattern p ↔ q is given by –––––––––.


Show that the following statement pattern is contingency.

(p∧~q) → (~p∧~q)


Show that the following statement pattern is contingency.

(p → q) ↔ (~ p ∨ q)


Show that the following statement pattern is contingency.

(p → q) ∧ (p → r)


Using the truth table, verify

p → (p → q) ≡ ~ q → (p → q)


Prove that the following pair of statement pattern is equivalent.

~(p ∧ q) and ~p ∨ ~q


Write the dual of the following:

~(p ∨ q) ∧ [p ∨ ~ (q ∧ ~ r)]


Using the rules of negation, write the negation of the following:

(p → r) ∧ q


Using the rules of negation, write the negation of the following:

(~p ∧ q) ∧ (~q ∨ ~r)


With proper justification, state the negation of the following.

(p → q) ∨ (p → r)


Construct the truth table for the following statement pattern.

(p ∧ ~ q) ↔ (q → p)


Construct the truth table for the following statement pattern.

(~p ∨ q) ∧ (~p ∧ ~q)


Construct the truth table for the following statement pattern.

(p ∧ r) → (p ∨ ~q)


What is tautology? What is contradiction?
Show that the negation of a tautology is a contradiction and the negation of a contradiction is a tautology.


Determine whether the following statement pattern is a tautology, contradiction, or contingency.

[(p ∧ q) ∨ (~p)] ∨ [p ∧ (~ q)]


Determine whether the following statement pattern is a tautology, contradiction, or contingency.

[~(p ∧ q) → p] ↔ [(~p) ∧ (~q)]


Using the truth table, prove the following logical equivalence.

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)


Using the truth table, prove the following logical equivalence.

[~(p ∨ q) ∨ (p ∨ q)] ∧ r ≡ r


Using the truth table, prove the following logical equivalence.

p ↔ q ≡ ~(p ∧ ~q) ∧ ~(q ∧ ~p)


Write the converse, inverse, contrapositive of the following statement.

If a man is bachelor, then he is happy.


Write the converse, inverse, contrapositive of the following statement.

If I do not work hard, then I do not prosper.


State the dual of the following statement by applying the principle of duality.

p ∨ (q ∨ r) ≡ ~[(p ∧ q) ∨ (r ∨ s)]


State the dual of the following statement by applying the principle of duality.

2 is even number or 9 is a perfect square.


Write the dual of the following.

(~p ∧ q) ∨ (p ∧ ~q) ∨ (~p ∧ ~q)


Write the dual of the following.

(p ∧ q) ∧ r ≡ p ∧ (q ∧ r)


Express the truth of the following statement by the Venn diagram.

Some members of the present Indian cricket are not committed.


The false statement in the following is ______.


Write the converse and contrapositive of the following statements.

“If a function is differentiable then it is continuous”


Choose the correct alternative:

If p → q is an implication, then the implication ~q → ~p is called its


The contrapositive of p → ~ q is ______


Which of the following is not equivalent to p → q.


Using truth table verify that:

(p ∧ q)∨ ∼ q ≡ p∨ ∼ q


Determine whether the following statement pattern is a tautology, contradiction, or contingency:

[(∼ p ∧ q) ∧ (q ∧ r)] ∧ (∼ q)


Show that the following statement pattern is a contingency:

(p→q)∧(p→r)


In the triangle PQR, `bar(PQ) = 2bara and bar(QR)` = `2 bar(b)` . The mid-point of PR is M. Find following vectors in terms of `bar(a) and bar(b)` .

  1. `bar(PR)`  
  2. `bar(PM)`
  3. `bar(QM)`

Prepare truth table for the statement pattern `(p -> q) ∨ (q -> p)` and show that it is a tautology.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×