मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

With proper justification, state the negation of the following. (p → q) ∨ (p → r) - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

With proper justification, state the negation of the following.

(p → q) ∨ (p → r)

बेरीज

उत्तर

Step 1: Expressing Implications in Terms of Logical Operators

p → q ≡ ∼p ∨ q

p → r ≡ ∼p ∨ r

(p → q) ∨ (p → r)

(∼p ∨ q) ∨ (∼p ∨ r)

Using the associative and distributive properties of logical operators:

∼p ∨ (q ∨ r)

Step 2: Negation of the Statement

∼[∼p ∨ (q ∨ r)]

Using De Morgan’s Theorem:

∼(∼p) ∧ ∼(q ∨ r)

p ∧ (∼q ∧ ∼r)

p ∧ ∼q ∧ ∼r

Step 3: Interpretation

The negation of the given statement means:

  • p is true.
  • q is false.
  • r is false.

Thus, the negation of (p → q) ∨ (p → r) is:

p ∧ ∼ q ∧ ∼r

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Mathematical Logic - Exercise 1.8 [पृष्ठ २१]

APPEARS IN

संबंधित प्रश्‍न

Express the following statement in symbolic form and write its truth value.

"If 4 is an odd number, then 6 is divisible by 3 "


Express the following statement in symbolic form and write its truth value.
"If 4 is an odd number, then 6 is divisible by 3."


By constructing the truth table, determine whether the following statement pattern ls a tautology , contradiction or . contingency.  (p →  q) ∧  (p ∧ ~ q ).


Using the truth table prove the following logical equivalence.

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

(p ↔ q) ∧ (p → ∼ q)


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

∼ (∼ q ∧ p) ∧ q


Examine whether the following statement pattern is a tautology or a contradiction or a contingency.

(p ∧ ∼ q) ↔ (p → q)


Examine whether the following statement pattern is a tautology, a contradiction or a contingency.

q ∨ [~ (p ∧ q)]


Examine whether the following statement pattern is a tautology, a contradiction or a contingency.

(~ q ∧ p) ∧ (p ∧ ~ p)


Examine whether the following statement pattern is a tautology, a contradiction or a contingency.

(p ∧ ~ q) → (~ p ∧ ~ q)


Prove that the following statement pattern is a tautology.

(~p ∧ ~q ) → (p → q)


Show that the following statement pattern is contingency.

(p → q) ∧ (p → r)


Using the truth table, verify.

p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)


Using the truth table, verify

p → (p → q) ≡ ~ q → (p → q)


Prove that the following pair of statement pattern is equivalent.

p ↔ q and (p → q) ∧ (q → p)


Write the dual of the following:

(p ∨ q) ∨ r


Write the negation of the following statement.

∀ n ∈ N, n + 1 > 0


Using the rules of negation, write the negation of the following:

(~p ∧ q) ∧ (~q ∨ ~r)


Write the converse, inverse, and contrapositive of the following statement.

If he studies, then he will go to college.


With proper justification, state the negation of the following.

(p ↔ q) v (~ q → ~ r)


Construct the truth table for the following statement pattern.

(~p ∨ q) ∧ (~p ∧ ~q)


What is tautology? What is contradiction?
Show that the negation of a tautology is a contradiction and the negation of a contradiction is a tautology.


Determine whether the following statement pattern is a tautology, contradiction, or contingency.

[(~p ∧ q) ∧ (q ∧ r)] ∨ (~q)


Determine whether the following statement pattern is a tautology, contradiction, or contingency.

[~(p ∧ q) → p] ↔ [(~p) ∧ (~q)]


Using the truth table, prove the following logical equivalence.

p ↔ q ≡ ~(p ∧ ~q) ∧ ~(q ∧ ~p)


Using the truth table, prove the following logical equivalence.

~p ∧ q ≡ [(p ∨ q)] ∧ ~p


Write the converse, inverse, contrapositive of the following statement.

If I do not work hard, then I do not prosper.


State the dual of the following statement by applying the principle of duality.

2 is even number or 9 is a perfect square.


Write the dual of the following.

~(p ∨ q) ≡ ~p ∧ ~q


Write the converse and contrapositive of the following statements.

“If a function is differentiable then it is continuous”


Write the dual of the following

(p ˄ ∼q) ˅ (∼p ˄ q) ≡ (p ˅ q) ˄ ∼(p ˄ q)


Write the dual of the following.

13 is prime number and India is a democratic country


Complete the truth table.

p q r q → r r → p (q → r) ˅ (r → p)
T T T T `square` T
T T F F `square` `square`
T F T T `square` T
T F F T `square` `square`
F T T `square` F T
F T F `square` T `square`
F F T `square` F T
F F F `square` T `square`

The given statement pattern is a `square`


Which of the following is not true for any two statements p and q?


Using truth table verify that:

(p ∧ q)∨ ∼ q ≡ p∨ ∼ q


In the triangle PQR, `bar(PQ) = 2bara and bar(QR)` = `2 bar(b)` . The mid-point of PR is M. Find following vectors in terms of `bar(a) and bar(b)` .

  1. `bar(PR)`  
  2. `bar(PM)`
  3. `bar(QM)`

If p, q are true statements and r, s are false statements, then find the truth value of ∼ [(p ∧ ∼ r) ∨ (∼ q ∨ s)].


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×