Advertisements
Advertisements
प्रश्न
Show that the following statement pattern is contingency.
(p → q) ↔ (~ p ∨ q)
उत्तर
p | q | ~p | p→q | ~p∨q | (p→q)↔(~p∨q) |
T | T | F | T | T | T |
T | F | F | F | F | T |
F | T | T | T | T | T |
F | F | T | T | T | T |
All the truth values in the last column are T. Hence, it is a tautology. Not contingency.
APPEARS IN
संबंधित प्रश्न
Express the following statement in symbolic form and write its truth value.
"If 4 is an odd number, then 6 is divisible by 3."
Show that the following statement pattern in contingency :
(~p v q) → [p ∧ (q v ~ q)]
Use the quantifiers to convert the following open sentence defined on N into true statement:
x2 ≥ 1
Prove that the following statement pattern is equivalent:
(p v q) → r and (p → r) ∧ (q → r)
Write the negation of the Following Statement :
∀ y ∈ N, y2 + 3 ≤ 7
Write converse and inverse of the following statement :
"If Ravi is good in logic then Ravi is good in Mathematics."
Examine whether the following statement (p ∧ q) ∨ (∼p ∨ ∼q) is a tautology or contradiction or neither of them.
Using the truth table prove the following logical equivalence.
p ↔ q ≡ ∼ [(p ∨ q) ∧ ∼ (p ∧ q)]
Using the truth table prove the following logical equivalence.
p → (q → p) ≡ ∼ p → (p → q)
Examine whether the following statement pattern is a tautology or a contradiction or a contingency.
(p ∧ q) → (q ∨ p)
Examine whether the following statement pattern is a tautology or a contradiction or a contingency.
[(p → q) ∧ ∼ q] → ∼ p
Examine whether the following statement pattern is a tautology or a contradiction or a contingency.
∼ (∼ q ∧ p) ∧ q
Determine whether the following statement pattern is a tautology, contradiction or contingency:
[p → (q → r)] ↔ [(p ∧ q) → r]
Prepare truth tables for the following statement pattern.
(~ p ∨ q) ∧ (~ p ∨ ~ q)
Prepare truth table for (p ˄ q) ˅ ~ r
(p ∧ q) ∨ ~ r
Prove that the following statement pattern is a tautology.
(~ p ∨ ~ q) ↔ ~ (p ∧ q)
Show that the following statement pattern is contingency.
(p → q) ∧ (p → r)
Using the truth table, verify
~(p → ~q) ≡ p ∧ ~ (~ q) ≡ p ∧ q
Prove that the following pair of statement pattern is equivalent.
p → q and ~ q → ~ p and ~ p ∨ q
Write the dual of the following:
p ∨ (q ∨ r) ≡ (p ∨ q) ∨ r
Write the dual statement of the following compound statement.
Karina is very good or everybody likes her.
Write the negation of the following statement.
∀ n ∈ N, n + 1 > 0
Write the negation of the following statement.
∃ n ∈ N, (n2 + 2) is odd number.
With proper justification, state the negation of the following.
(p → q) ∨ (p → r)
Construct the truth table for the following statement pattern.
(p ∧ r) → (p ∨ ~q)
Determine whether the following statement pattern is a tautology, contradiction, or contingency.
[~(p ∧ q) → p] ↔ [(~p) ∧ (~q)]
Using the truth table, prove the following logical equivalence.
p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)
State the dual of the following statement by applying the principle of duality.
p ∨ (q ∨ r) ≡ ~[(p ∧ q) ∨ (r ∨ s)]
Express the truth of the following statement by the Venn diagram.
Some members of the present Indian cricket are not committed.
The statement pattern (p ∧ q) ∧ [~ r v (p ∧ q)] v (~ p ∧ q) is equivalent to ______.
Which of the following is not equivalent to p → q.
Examine whether the following statement pattern is a tautology or a contradiction or a contingency:
(∼p ∧ ∼q) → (p → q)
If p, q are true statements and r, s are false statements, then find the truth value of ∼ [(p ∧ ∼ r) ∨ (∼ q ∨ s)].